ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Из точки A проведены прямые, касающиеся
окружности S в точках B и C. Докажите, что центр вписанной
окружности треугольника ABC и центр его вневписанной
окружности, касающейся стороны BC, лежат на окружности S.
|
Страница: << 1 2 3 4 >> [Всего задач: 17]
Через вершины A и B треугольника ABC проведены
две параллельные прямые, а прямые m и n симметричны
им относительно биссектрис соответствующих углов.
Докажите, что точка пересечения прямых m и n лежит на
описанной окружности треугольника ABC.
На прямой отметили точки $X_1, \ldots, X_{10}$ (именно в таком порядке) и построили на отрезках $X_1X_2$, $X_2X_3$, ..., $X_9X_{10}$ как на основаниях равнобедренные треугольники с углом $\alpha$ при вершинах. Оказалось, что все эти вершины лежат на полуокружности с диаметром $X_1X_{10}$. Найдите $\alpha$.
Доказать, что для любого треугольника отрезок, соединяющий центры вписанной и вневписанной окружностей, делится описанной окружностью пополам.
а) Из точки A проведены прямые, касающиеся
окружности S в точках B и C. Докажите, что центр вписанной
окружности треугольника ABC и центр его вневписанной
окружности, касающейся стороны BC, лежат на окружности S.
На сторонах AC и BC треугольника ABC внешним
образом построены квадраты ACA1A2 и BCB1B2. Докажите,
что прямые
A1B, A2B2 и AB1 пересекаются в одной точке.
Страница: << 1 2 3 4 >> [Всего задач: 17]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке