ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Десять человек захотели основать клуб. Для этого им необходимо собрать определённую сумму вступительных взносов. Если бы организаторов было на пять человек больше, то каждый из них должен был бы внести на 100 долларов меньше. Сколько денег внёс каждый?

Вниз   Решение


Диагонали выпуклого четырёхугольника ABCD пересекаются в точке O; P и Q — произвольные точки. Докажите, что

$\displaystyle {\frac{S_{AOP}}{S_{BOQ}}}$ = $\displaystyle {\frac{S_{ACP}}{S_{BDQ}}}$ . $\displaystyle {\frac{S_{ABD}}{S_{ABC}}}$.


Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 56779

Тема:   [ Площадь (прочее) ]
Сложность: 5
Классы: 9

Продолжения сторон AD и BC выпуклого четырехугольника ABCD пересекаются в точке OM и N — середины сторон AB и CDP и Q — середины диагоналей AC и BD. Докажите, что:
а)  SPMQN = | SABD - SACD|/2;
б)  SOPQ = SABCD/4.
Прислать комментарий     Решение


Задача 56780

Тема:   [ Площадь (прочее) ]
Сложность: 5
Классы: 9

На сторонах AB и CD выпуклого четырехугольника ABCD взяты точки E и F. Пусть K, L, M и N — середины отрезков DE, BF, CE и AF. Докажите, что четырехугольник KLMN выпуклый и его площадь не зависит от выбора точек E и F.
Прислать комментарий     Решение


Задача 56781

Тема:   [ Площадь (прочее) ]
Сложность: 5
Классы: 9

Середины диагоналей  AC, BD, CE,... выпуклого шестиугольника ABCDEF образуют выпуклый шестиугольник. Докажите, что его площадь в четыре раза меньше площади исходного шестиугольника.
Прислать комментарий     Решение


Задача 56782

Тема:   [ Площадь (прочее) ]
Сложность: 5
Классы: 9

Диаметр PQ и перпендикулярная ему хорда RS пересекаются в точке A. Точка C лежит на окружности, а точка B — внутри окружности, причем  BC || PQ и BC = RA. Из точек A и B опущены перпендикуляры AK и BL на прямую CQ. Докажите, что  SACK = SBCL.
Прислать комментарий     Решение


Задача 56783

Тема:   [ Площадь (прочее) ]
Сложность: 5
Классы: 9

Диагонали выпуклого четырёхугольника ABCD пересекаются в точке O; P и Q — произвольные точки. Докажите, что

$\displaystyle {\frac{S_{AOP}}{S_{BOQ}}}$ = $\displaystyle {\frac{S_{ACP}}{S_{BDQ}}}$ . $\displaystyle {\frac{S_{ABD}}{S_{ABC}}}$.


Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .