Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Расстояния от центра описанной окружности остроугольного треугольника до его сторон равны da, db и dc. Докажите, что  da + db + dc = R + r.

Вниз   Решение


Автор: Чикин В.

С помощью циркуля и линейки постройте выпуклый четырёхугольник по серединам его трёх равных сторон.

ВверхВниз   Решение


Автор: Фольклор

Круг радиуса 1 покрыт семью одинаковыми кругами. Докажите, что их радиус не меньше ½.

ВверхВниз   Решение


Сумма трёх натуральных чисел, являющихся точными квадратами, делится на 9.
Докажите, что из них можно выбрать два, разность которых также делится на 9.

ВверхВниз   Решение


Дан трехгранный угол с вершиной O. Можно ли найти такое плоское сечение ABC, чтобы углы OAB, OBA, OBC, OCB, OAC, OCA были острыми?

ВверхВниз   Решение


Две окружности разных радиусов касаются в точке C одной прямой и расположены по одну сторону от неё. Отрезок CD – диаметр большей окружности. Из точки D проведены две прямые, касающиеся меньшей окружности в точках A и B. Прямая, проходящая через точки C и A, образует с общей касательной к окружностям в точке C угол 75° и пересекает большую окружность в точке M. Известно, что  AM = .  Найдите площадь фигуры, ограниченной отрезками касательных DA, DB и дугой ACB меньшей окружности.

ВверхВниз   Решение


Биссектриса угла A треугольника ABC пересекает описанную окружность в точке D. Докажите, что  AB + AC $ \leq$ 2AD.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 57046

Тема:   [ Теорема Птолемея ]
Сложность: 5
Классы: 9

Четырехугольник ABCD вписанный. Докажите, что

$\displaystyle {\frac{AC}{BD}}$ = $\displaystyle {\frac{AB\cdot AD+CB\cdot CD}{BA\cdot BC+DA\cdot DC}}$.


Прислать комментарий     Решение

Задача 57048

Темы:   [ Теорема Птолемея ]
[ Вписанные и описанные окружности ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 5
Классы: 8,9,10

Расстояния от центра описанной окружности остроугольного треугольника до его сторон равны da, db и dc. Докажите, что  da + db + dc = R + r.
Прислать комментарий     Решение


Задача 57049

Тема:   [ Теорема Птолемея ]
Сложность: 5
Классы: 9

Вписанная окружность касается сторон BC, CA и AB в точках A1, B1 и C1. Пусть Q — середина отрезка A1B1. Докажите, что $ \angle$B1C1C = $ \angle$QC1A1.
Прислать комментарий     Решение


Задача 57050

Темы:   [ Теорема Птолемея ]
[ Неравенства с биссектрисами ]
Сложность: 5
Классы: 8,9,10

Биссектриса угла A треугольника ABC пересекает описанную окружность в точке D. Докажите, что  AB + AC $ \leq$ 2AD.
Прислать комментарий     Решение


Задача 57051

Темы:   [ Теорема Птолемея ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 5
Классы: 8,9

На дуге CD описанной окружности квадрата ABCD взята точка P. Докажите, что  PA + PC = $ \sqrt{2}$PB.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .