ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Правильный n-угольник A1...An вписан в окружность радиуса R с центром O,   ei = x =   – произвольный вектор.
Докажите, что   Σ (ei, x)² = ½ nR²·OX².

   Решение

Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 239]      



Задача 55362

Темы:   [ Разложение вектора по двум неколлинеарным векторам ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
Сложность: 4-
Классы: 8,9

Докажите, что при произвольном выборе точки O равенство   = k + (1 – k)  является необходимым и достаточным условием принадлежности различных точек A, B, C одной прямой.

Прислать комментарий     Решение

Задача 56471

Темы:   [ Отрезки, заключенные между параллельными прямыми ]
[ Векторы помогают решить задачу ]
[ Движение помогает решить задачу ]
Сложность: 4-
Классы: 8,9

На сторонах AB, BC, CD и DA выпуклого четырёхугольника ABCD взяты соответственно точки P, Q, R и Sб  O – точка пересечения отрезков PR и QS.
Докажите,что если  AP : AB = DR : DC  и  AS : AD = BQ : BC,  то и  SO : SQ = AP : ABPQ : PR = AS : ;AD.

Прислать комментарий     Решение

Задача 57083

Темы:   [ Правильные многоугольники ]
[ Скалярное произведение. Соотношения ]
Сложность: 4-
Классы: 9

Правильный n-угольник A1...An вписан в окружность радиуса R с центром O,   ei = x =   – произвольный вектор.
Докажите, что   Σ (ei, x)² = ½ nR²·OX².

Прислать комментарий     Решение

Задача 58310

Темы:   [ Индукция в геометрии ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
Сложность: 4-
Классы: 8,9,10,11

На прямой даны точки A1, ..., An и B1, ..., Bn–1. Докажите, что     = 1.

Прислать комментарий     Решение

Задача 64629

Темы:   [ Признаки подобия ]
[ Векторы помогают решить задачу ]
Сложность: 4-
Классы: 10,11

На стороне AB треугольника ABC выбраны точки C1 и C2. Аналогично на стороне BC выбраны точки A1 и A2, а на стороне AC – точки B1 и B2. Оказалось, что отрезки A1B2, B1C2 и C1A2 имеют равные длины, пересекаются в одной точке, и угол между каждыми двумя из них равен 60°. Докажите, что   .

Прислать комментарий     Решение

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 239]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .