ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 239]      



Задача 108550

Темы:   [ Метод координат на плоскости ]
[ Скалярное произведение. Соотношения ]
[ Окружности (прочее) ]
Сложность: 3+
Классы: 8,9

Составьте уравнение окружности, проходящей через точки A(- 2;1), B(9;3) и C(1;7).

Прислать комментарий     Решение


Задача 116186

Темы:   [ Векторы помогают решить задачу ]
[ Неравенства с векторами ]
[ Неравенство треугольника (прочее) ]
[ Параллелограммы (прочее) ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC на стороне AB выбраны точки K и L так, что AK = BL, а на стороне BC — точки M и N так, что CN = BM. Докажите, что KN + LMAC.

Прислать комментарий     Решение

Задача 55358

Темы:   [ Разложение вектора по двум неколлинеарным векторам ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3+
Классы: 8,9

Пусть M и N — точки пересечения медиан треугольников ABC и PQR соответственно. Докажите, что $ \overrightarrow{MN} $ = $ {\frac{1}{3}}$($ \overrightarrow{AP} $ + $ \overrightarrow{BQ} $ + $ \overrightarrow{CR} $).

Прислать комментарий     Решение


Задача 55369

Темы:   [ Разложение вектора по двум неколлинеарным векторам ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
Сложность: 3+
Классы: 8,9

Докажите, что существует треугольник, стороны которого равны и параллельны медианам данного треугольника.

Прислать комментарий     Решение


Задача 34959

Темы:   [ Пирамида (прочее) ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
Сложность: 3+
Классы: 10,11

Можно ли расставить на ребрах 5-угольной пирамиды стрелки, так что сумма всех образовавшихся 10 векторов была бы равна 0.
Прислать комментарий     Решение


Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 239]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .