Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Дан равнобедренный треугольник ABC с основанием AC. Доказать, что конец D отрезка BD, выходящего из вершины B, параллельного основанию и равного боковой стороне треугольника, является центром вневписанной окружности треугольника.

Вниз   Решение


Диагонали вписанного четырёхугольника ABCD пересекаются в точке O. Описанные окружности треугольников AOB и COD пересекаются в точке M на стороне AD. Докажите, что точка O – центр вписанной окружности треугольника BMC.

ВверхВниз   Решение


Несколько прямых, никакие две из которых не параллельны, разрезают плоскость на части. Внутри одной из этих частей отметили точку A.
Докажите, что точка, лежащая с A по разные стороны от всех данных прямых, существует тогда и только тогда, когда часть, содержащая A, неограничена.

ВверхВниз   Решение


Пусть многочлен с действительными коэффициентами f(x) имеет корень  a + ib.  Докажите, что число  a – ib  также будет корнем f(x).

ВверхВниз   Решение


Площади треугольников ABC и A1B1C1 равны S и S1, причем треугольник ABC не тупоугольный. Наибольшее из отношений  a1/a, b1/b и c1/c равно k. Докажите, что  S1 $ \leq$ k2S.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 80]      



Задача 57343

Тема:   [ Неравенства с площадями ]
Сложность: 3+
Классы: 9

ABCD — выпуклый четырехугольник площади S. Угол между прямыми AB и CD равен a, угол между AD и BC равен $ \beta$. Докажите, что

AB . CD sin$\displaystyle \alpha$ + AD . BC sin$\displaystyle \beta$ $\displaystyle \leq$ 2S $\displaystyle \leq$ AB . CD + AD . BC.


Прислать комментарий     Решение

Задача 57344

Тема:   [ Неравенства с площадями ]
Сложность: 3+
Классы: 9

Через точку, лежащую внутри треугольника, проведены три прямые, параллельные его сторонам. Обозначим площади частей, на которые эти прямые разбивают треугольник, так, как показано на рис. Докажите, что  a/$ \alpha$ + b/$ \beta$ + c/$ \gamma$ $ \geq$ 3/2.


Прислать комментарий     Решение

Задача 57345

Тема:   [ Неравенства с площадями ]
Сложность: 3+
Классы: 9

Площади треугольников ABC и A1B1C1 равны S и S1, причем треугольник ABC не тупоугольный. Наибольшее из отношений  a1/a, b1/b и c1/c равно k. Докажите, что  S1 $ \leq$ k2S.
Прислать комментарий     Решение


Задача 78530

Темы:   [ Неравенства с площадями ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Разные задачи на разрезания ]
Сложность: 3+
Классы: 7,8

В квадрате со стороной длины 1 выбрано 102 точки, из которых никакие три не лежат на одной прямой. Доказать, что найдётся треугольник с вершинами в этих точках, площадь которого меньше, чем 1/100.
Прислать комментарий     Решение


Задача 79312

Темы:   [ Неравенства с площадями ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 11

В остроугольном треугольнике ABC проведены медиана AM, биссектриса BK и высота CH. Пусть M'K'H' — треугольник с вершинами в точках пересечения трёх проведённых отрезков. Может ли площадь полученного треугольника быть больше 0,499 площади треугольника ABC?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 80]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .