ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

α, β и γ - углы треугольника ABC. Докажите, что для непрямоугольного треугольника  tg$ \alpha$ + tg$ \beta$ + tg$ \gamma$ = 4S/(a2 + b2 + c2 - 8R2).

   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 13]      



Задача 57632

Тема:   [ Тангенсы и котангенсы углов треугольника ]
Сложность: 4
Классы: 9

α, β и γ - углы треугольника ABC. Докажите, что для непрямоугольного треугольника  tg$ \alpha$ + tg$ \beta$ + tg$ \gamma$ = 4S/(a2 + b2 + c2 - 8R2).
Прислать комментарий     Решение


Задача 57627

Темы:   [ Тангенсы и котангенсы углов треугольника ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Теорема синусов ]
[ Теорема косинусов ]
Сложность: 5-
Классы: 9,10,11

Пусть α, β и γ - углы треугольника ABC. Докажите, что
а)  ctg$ \alpha$ + ctg$ \beta$ + ctg$ \gamma$ = (a2 + b2 + c2)/4S;
б)  a2ctg$ \alpha$ + b2ctg$ \beta$ + c2ctg$ \gamma$ = 4S.
Прислать комментарий     Решение


Задача 66777

Темы:   [ Замечательные точки и линии в треугольнике (прочее) ]
[ Тангенсы и котангенсы углов треугольника ]
Сложность: 3
Классы: 8,9,10,11

В остроугольном треугольнике $ABC$ $A_M$ – середина стороны $BC$, $A_H$ – основание высоты, опущенной на эту сторону. Аналогично определяются точки $B_M$, $B_H$, $C_M$, $C_H$. Докажите, что одно из отношений $A_MA_H:A_HA$, $B_MB_H:B_HB$, $C_MC_H:C_HC$ равно сумме двух других.
Прислать комментарий     Решение


Задача 66631

Темы:   [ Теория алгоритмов (прочее) ]
[ Тангенсы и котангенсы углов треугольника ]
Сложность: 3+
Классы: 9,10,11

Высота каждой из 2019 ступенек «лестницы» (см. рисунок) равна 1, а ширина увеличивается от 1 до 2019. Правда ли, что отрезок, соединяющий левую нижнюю и правую верхнюю точки этой лестницы, не пересекает лестницу?

Прислать комментарий     Решение

Задача 61168

Темы:   [ Геометрические интерпретации в алгебре ]
[ Тождественные преобразования (тригонометрия) ]
[ Тангенсы и котангенсы углов треугольника ]
Сложность: 3+
Классы: 9,10,11

Докажите равенство:

arctg 1 + arctg $\displaystyle {\textstyle\dfrac{1}{2}}$ + arctg $\displaystyle {\textstyle\dfrac{1}{3}}$ = $\displaystyle {\dfrac{\pi}{2}}$.


Прислать комментарий     Решение

Страница: << 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .