ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Окружность, построенная на биссектрисе AD треугольника ABC как на диаметре, пересекает стороны AB и AC соответственно в точках M и N, отличных от A. Докажите, что  AM = AN.

Вниз   Решение


В ромб, одна из диагоналей которого равна 20 см, вписан круг радиуса 6 см. Вычислите площадь части ромба, расположенной вне круга. Будет ли эта площадь больше 36 см2 ? (Ответ обосновать.)

ВверхВниз   Решение


Биссектриса внутреннего угла при вершине A и биссектриса внешнего угла при вершине C треугольника ABC пересекаются в точке M.
Найдите ∠BMC, если  ∠BAC = 40°.

ВверхВниз   Решение


На доске написано несколько положительных чисел, каждое из которых равно полусумме остальных. Сколько чисел написано на доске?

ВверхВниз   Решение



Диагональ прямоугольного параллелепипеда равна a и составляет с одной гранью угол 30o, а с другой 45o. Найдите его объем.

ВверхВниз   Решение


На сторонах треугольника ABC внешним (внутренним) образом построены правильные треугольники ABC1, AB1C и A1BC. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке. Найдите трилинейные координаты этой точки.

Вверх   Решение

Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 298]      



Задача 57792

Тема:   [ Барицентрические координаты ]
Сложность: 6+
Классы: 9,10

Прямая l проходит через точку X с барицентрическими координатами ($ \alpha$ : $ \beta$ : $ \gamma$). Пусть da, db, dc — расстояния от вершин A, B, C до прямой l с учетом знака (для точек, лежащих по разные стороны от прямой l, знаки разные). Докажите, что da$ \alpha$ + db$ \beta$ + dc$ \gamma$ = 0.
Прислать комментарий     Решение


Задача 57799

Тема:   [ Трилинейные координаты ]
Сложность: 6+
Классы: 9,10

На сторонах треугольника ABC внешним (внутренним) образом построены правильные треугольники ABC1, AB1C и A1BC. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке. Найдите трилинейные координаты этой точки.
Прислать комментарий     Решение


Задача 58290

Тема:   [ Системы точек ]
Сложность: 6+
Классы: 8,9

Докажите, что для любого натурального N существует N точек, никакие три из которых не лежат на одной прямой и все попарные расстояния между которыми являются целыми числами.
Прислать комментарий     Решение


Задача 57793

Тема:   [ Барицентрические координаты ]
Сложность: 7
Классы: 9,10

Прямая l касается вписанной окружности треугольника ABC. Пусть $ \delta_{a}^{}$, $ \delta_{b}^{}$, $ \delta_{c}^{}$ — расстояния от прямой l до точек A, B, C с учетом знака (расстояние положительно, если точка и центр вписанной окружности лежат по одну сторону от прямой l; в противном случае расстояние отрциательно). Докажите, что a$ \delta_{a}^{}$ + b$ \delta_{b}^{}$ + c$ \delta_{c}^{}$ = 2SABC.
Прислать комментарий     Решение


Задача 57794

Тема:   [ Барицентрические координаты ]
Сложность: 7
Классы: 9,10

Прямая l касается вневписанной окружности треугольника ABC, касающейся стороны BC. Пусть $ \delta_{a}^{}$, $ \delta_{b}^{}$, $ \delta_{c}^{}$ — расстояния от прямой l до точек A, B, C с учетом знака (расстояние положительно, если точка и центр вневписанной окружности лежат по одну сторону от прямой l; в противном случае расстояние отрциательно). Докажите, что - a$ \delta_{a}^{}$ + b$ \delta_{b}^{}$ + c$ \delta_{c}^{}$ = 2SABC.
Прислать комментарий     Решение


Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 298]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .