ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Окружность, построенная на биссектрисе AD треугольника ABC как на диаметре, пересекает стороны AB и AC соответственно в точках M и N, отличных от A. Докажите, что  AM = AN.

Вниз   Решение


В ромб, одна из диагоналей которого равна 20 см, вписан круг радиуса 6 см. Вычислите площадь части ромба, расположенной вне круга. Будет ли эта площадь больше 36 см2 ? (Ответ обосновать.)

ВверхВниз   Решение


Биссектриса внутреннего угла при вершине A и биссектриса внешнего угла при вершине C треугольника ABC пересекаются в точке M.
Найдите ∠BMC, если  ∠BAC = 40°.

ВверхВниз   Решение


На доске написано несколько положительных чисел, каждое из которых равно полусумме остальных. Сколько чисел написано на доске?

ВверхВниз   Решение



Диагональ прямоугольного параллелепипеда равна a и составляет с одной гранью угол 30o, а с другой 45o. Найдите его объем.

ВверхВниз   Решение


На сторонах треугольника ABC внешним (внутренним) образом построены правильные треугольники ABC1, AB1C и A1BC. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке. Найдите трилинейные координаты этой точки.

ВверхВниз   Решение


Радиус окружности равен 13, хорда равна 10. Найдите её расстояние от центра.

ВверхВниз   Решение


Чемпионат России по шахматам проводится в один круг. Сколько играется партий, если участвуют 18 шахматистов?

ВверхВниз   Решение


Две окружности радиуса R касаются в точке K. На одной из них взята точка A, на другой — точка B, причем $ \angle$AKB = 90o. Докажите, что AB = 2R.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 21641]      



Задача 57807

Тема:   [ Параллельный перенос (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что при параллельном переносе окружность переходит в окружность.
Прислать комментарий     Решение


Задача 57808

Тема:   [ Параллельный перенос (прочее) ]
Сложность: 2-
Классы: 8,9

Две окружности радиуса R касаются в точке K. На одной из них взята точка A, на другой — точка B, причем $ \angle$AKB = 90o. Докажите, что AB = 2R.
Прислать комментарий     Решение


Задача 57809

Тема:   [ Параллельный перенос (прочее) ]
Сложность: 2-
Классы: 8,9

Две окружности радиуса R пересекаются в точках M и N. Пусть A и B — точки пересечения серединного перпендикуляра к отрезку MN с этими окружностями, лежащие по одну сторону от прямой MN. Докажите, что MN2 + AB2 = 4R2.
Прислать комментарий     Решение


Задача 57810

Тема:   [ Параллельный перенос (прочее) ]
Сложность: 2-
Классы: 8,9

Внутри прямоугольника ABCD взята точка M. Докажите, что существует выпуклый четырехугольник с перпендикулярными диагоналями длины AB и BC, стороны которого равны AM, BM, CM, DM.
Прислать комментарий     Решение


Задача 57833

Тема:   [ Центральная симметрия (прочее) ]
Сложность: 2-
Классы: 9

Докажите, что при центральной симметрии окружность переходит в окружность.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 21641]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .