ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Автор: Обухов Б.

Дан выпуклый пятиугольник ABCDE, все стороны которого равны между собой. Известно, что угол A равен 120°, угол C равен 135°, а угол D равен n°.
Найдите все возможные целые значения n.

Вниз   Решение


Четыре точки окружности следуют в порядке: A, B, C, D. Продолжение хорды AB за точку B и хорды CD за точку C пересекаются в точке E, причём угол AED равен 60o. Угол ABD в три раза больше угла BAC. Докажите, что AD — диаметр окружности.

ВверхВниз   Решение


Внутри равнобедренного прямоугольного треугольника ABC с гипотенузой AB взята такая точка M, что угол MAB на 15° больше угла MAC, а угол MCB на 15° больше угла MBC. Найдите угол BMC.

ВверхВниз   Решение


На прямой отмечено 100 точек, и ещё одна точка отмечена вне прямой. Рассмотрим все треугольники с вершинами в этих точках.
Какое наибольшее количество из них могут быть равнобедренными?

ВверхВниз   Решение


Внутри острого угла XAY взята точка D , а на его сторонах AX и AY – точки B и C соответственно, причём ABC = XBD и ACB= YCD . Докажите, что центр окружности, описанной около треугольника ABC , лежит на отрезке AD .

ВверхВниз   Решение


Даны непересекающиеся хорды AB и CD окружности. Постройте точку X окружности так, чтобы хорды AX и BX высекали на хорде CD отрезок EF, имеющий данную длину a.

Вверх   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 93]      



Задача 116130

Темы:   [ Построение треугольников по различным точкам ]
[ Центральная симметрия помогает решить задачу ]
[ Метод ГМТ ]
Сложность: 2
Классы: 8,9

Автор: Фольклор

Hа доске была нарисована система координат и отмечены точки  A(1, 2)  и  B(3, 1).  Cистему координат стерли.
Bосстановите ее по двум отмеченным точкам.

Прислать комментарий     Решение

Задача 116178

Темы:   [ Построение треугольников по различным элементам ]
[ ГМТ - окружность или дуга окружности ]
[ Метод ГМТ ]
[ Гомотетия (ГМТ) ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Постройте треугольник по стороне, противолежащему углу и медиане, проведенной к другой стороне (исследование вопроса о количестве решений не требуется).

Прислать комментарий     Решение

Задача 54004

Темы:   [ Построения ]
[ Углы между биссектрисами ]
[ Метод ГМТ ]
Сложность: 4-
Классы: 8,9

С помощью циркуля и линейки постройте треугольник по стороне и проведённой к ней высоте, если известно, что эта сторона видна из центра вписанной в треугольник окружности под углом 135o.

Прислать комментарий     Решение


Задача 116199

Темы:   [ Построения (прочее) ]
[ Вписанные и описанные окружности ]
[ Метод ГМТ ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 4-
Классы: 8,9

Дан произвольный треугольник ABC. Постройте прямую, проходящую через вершину B и делящую его на два треугольника, радиусы вписанных окружностей которых равны.

Прислать комментарий     Решение

Задача 57821

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Перенос помогает решить задачу ]
[ Метод ГМТ ]
Сложность: 4
Классы: 8,9

Даны непересекающиеся хорды AB и CD окружности. Постройте точку X окружности так, чтобы хорды AX и BX высекали на хорде CD отрезок EF, имеющий данную длину a.
Прислать комментарий     Решение


Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 93]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .