ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Постройте вписанно-описанный четырёхугольник по двум противоположным вершинам и центру вписанной окружности. Любую конечную систему точек плоскости можно покрыть несколькими непересекающимися кругами, сумма диаметров которых меньше количества точек и расстояние между любыми двумя из которых Расстояние между двумя кругами — это расстояние между их ближайшими точками. Общие внешние касательные к парам окружностей S1
и S2, S2 и S3, S3 и S1 пересекаются в точках A,
B и C соответственно. Докажите, что точки A, B и C лежат
на одной прямой.
Какое слагаемое в разложении (1 + Постройте четырехугольник ABCD, в который можно
вписать окружность, зная длины двух соседних сторон AB
и AD и углы при вершинах B и D.
С помощью циркуля и линейки постройте квадрат по четырём точкам, лежащим на четырёх его сторонах.
С помощью циркуля и линейки проведите прямую, параллельную основаниям трапеции, так, чтобы отрезок этой прямой внутри трапеции делился бы диагоналями на три равные части. Постройте четырехугольник по углам и диагоналям.
|
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 43]
С помощью циркуля и линейки постройте четырёхугольник по диагоналям, углу между ними и двум каким-нибудь сторонам.
Постройте вписанный четырехугольник по четырем
сторонам (Брахмагупта).
Постройте четырехугольник по углам и диагоналям.
С помощью циркуля и линейки постройте параллелограмм по углу и диагоналям.
Постройте вписанно-описанный четырёхугольник по двум противоположным вершинам и центру вписанной окружности.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 43]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке