ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Постройте вписанно-описанный четырёхугольник по двум противоположным вершинам и центру вписанной окружности. Любую конечную систему точек плоскости можно покрыть несколькими непересекающимися кругами, сумма диаметров которых меньше количества точек и расстояние между любыми двумя из которых Расстояние между двумя кругами — это расстояние между их ближайшими точками. Общие внешние касательные к парам окружностей S1
и S2, S2 и S3, S3 и S1 пересекаются в точках A,
B и C соответственно. Докажите, что точки A, B и C лежат
на одной прямой.
Какое слагаемое в разложении (1 + Постройте четырехугольник ABCD, в который можно
вписать окружность, зная длины двух соседних сторон AB
и AD и углы при вершинах B и D.
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 563]
Постройте четырехугольник ABCD, в который можно
вписать окружность, зная длины двух соседних сторон AB
и AD и углы при вершинах B и D.
Постройте треугольник ABC по a, b и разности
углов A и B.
Постройте треугольник ABC по стороне c, высоте hc
и разности углов A и B.
Постройте треугольник ABC по: а) c, a - b (a > b)
и углу C; б) c, a + b и углу C.
Дана прямая l и точки A и B, лежащие по одну
сторону от нее. Постройте такую точку X прямой l, что
AX + XB = a, где a — данная величина.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 563]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке