ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Впишите в данную окружность n-угольник, стороны которого параллельны заданным n прямым.
б) Через центр O окружности проведено n прямых. Постройте описанный около окружности n-угольник, вершины которого лежат на этих прямых.

   Решение

Задачи

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 563]      



Задача 57893

Тема:   [ Композиции симметрий ]
Сложность: 6
Классы: 9

Две прямые пересекаются под углом $ \gamma$. Кузнечик прыгает с одной прямой на другую; длина каждого прыжка равна 1 м, и кузнечик не прыгает обратно, если только это возможно. Докажите, что последовательность прыжков периодична тогда и только тогда, когда $ \gamma$/$ \pi$ — рациональное число.
Прислать комментарий     Решение


Задача 57894

Тема:   [ Композиции симметрий ]
Сложность: 6
Классы: 9

а) Впишите в данную окружность n-угольник, стороны которого параллельны заданным n прямым.
б) Через центр O окружности проведено n прямых. Постройте описанный около окружности n-угольник, вершины которого лежат на этих прямых.
Прислать комментарий     Решение


Задача 57895

Тема:   [ Композиции симметрий ]
Сложность: 6
Классы: 9

Дано n прямых. Постройте n-угольник, для которого эти прямые являются: а) серединными перпендикулярами к сторонам; б) биссектрисами внешних или внутренних углов при вершинах.
Прислать комментарий     Решение


Задача 57896

Тема:   [ Композиции симметрий ]
Сложность: 6
Классы: 9

Впишите в данную окружность n-угольник, одна из сторон которого проходит через данную точку, а остальные стороны параллельны данным прямым.
Прислать комментарий     Решение


Задача 98334

Темы:   [ Правильный (равносторонний) треугольник ]
[ Осевая и скользящая симметрии (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 6,7,8

Барон Мюнхаузен утверждает, что пустил шар от борта бильярда, имеющего форму правильного треугольника, так, что тот, отражаясь от бортов, прошёл через некоторую точку три раза в трёх различных направлениях и вернулся в исходную точку. Могут ли слова барона быть правдой? (Отражение шара от борта происходит по закону "угол падения равен углу отражения".)

Прислать комментарий     Решение

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .