Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

Существует ли степень двойки, из которой перестановкой цифр можно получить другую степень двойки?

Вниз   Решение


Доказать, что существует бесконечно много чисел, не представимых в виде суммы трёх кубов.

ВверхВниз   Решение


Доказать, что при любом целом положительном n сумма     больше ½.

ВверхВниз   Решение


В последовательности 19752... каждая цифра, начиная с пятой, равна последней цифре суммы предыдущих четырёх цифр. Встретится ли в этой последовательности:
  а) набор цифр 1234; 3269;   б) вторично набор 1975;   в) набор 8197?

ВверхВниз   Решение


Из точки M описанной окружности треугольника ABC опущены перпендикуляры MP и MQ на прямые AB и AC. При каком положении точки M длина отрезка PQ максимальна?

ВверхВниз   Решение


Найти такие отличные от нуля неравные между собой целые числа a, b, c, чтобы выражение  x(xa)(xb)(xc) + 1  разлагалось в произведение двух многочленов (ненулевой степени) с целыми коэффициентами.

ВверхВниз   Решение


Решить в целых числах уравнение  x + y = x² – xy + y².

ВверхВниз   Решение


Дан треугольник ABC. Найдите на прямой AB точку M, для которой сумма радиусов описанных окружностей треугольников ACM и BCM была бы наименьшей.

ВверхВниз   Решение


Имеется 120-значное число. Его первые 12 цифр переставляются всеми возможными способами. Из полученных таким образом 120-значных чисел наугад выбирают 120 чисел. Доказать, что их сумма делится на 120.

ВверхВниз   Решение


Некоторое количество точек расположено на плоскости так, что каждые 3 из них можно заключить в круг радиуса r = 1. Доказать, что тогда и все точки можно заключить в круг радиуса 1.

ВверхВниз   Решение


Можно ли разместить в пространстве четыре свинцовых шара и точечный источник света так, чтобы каждый исходящий из источника света луч пересекал хотя бы один из шаров?

ВверхВниз   Решение


В некотором государстве города соединены дорогами. Длина каждой дороги меньше 500 км, и из каждого города в любой другой можно попасть, проехав по дорогам меньше 500 км. Когда одна дорога оказалась закрытой на ремонт, выяснилось, что из каждого города можно проехать по оставшимся дорогам в любой другой. Доказать, что при этом можно проехать меньше 1500 км.

ВверхВниз   Решение


   а) В квадрате площади 6 расположены три многоугольника площади 3. Докажите, что среди них найдутся два многоугольника,
площадь общей части которых не меньше 1.
   б) В квадрате площади 5 расположено девять многоугольников площади 1. Докажите, что среди них найдутся два многоугольника,
площадь общей части которых не меньше 1/9.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 26]      



Задача 35339

Темы:   [ Принцип Дирихле (площадь и объем) ]
[ Центральная симметрия ]
[ Движение помогает решить задачу ]
Сложность: 2+
Классы: 8,9,10

На планете Тау Кита суша занимает больше половины всей площади. Доказать, что таукитяне могут прорыть через центр планеты шахту, соединяющую сушу с сушей.
Прислать комментарий     Решение


Задача 32068

Темы:   [ Принцип Дирихле (площадь и объем) ]
[ Раскраски ]
Сложность: 3
Классы: 6,7,8

Квадратная площадь размером 100×100 выложена квадратными плитами 1×1 четырёх цветов: белого, красного, чёрного и серого – так, что никакие две плиты одинакового цвета не соприкасаются друг с другом (то есть не имеют общей стороны или вершины). Сколько может быть красных плит?

Прислать комментарий     Решение

Задача 58107

Темы:   [ Принцип Дирихле (площадь и объем) ]
[ Формула включения-исключения ]
[ Сочетания и размещения ]
[ Перегруппировка площадей ]
[ Доказательство от противного ]
Сложность: 3
Классы: 9,10

   а) В квадрате площади 6 расположены три многоугольника площади 3. Докажите, что среди них найдутся два многоугольника,
площадь общей части которых не меньше 1.
   б) В квадрате площади 5 расположено девять многоугольников площади 1. Докажите, что среди них найдутся два многоугольника,
площадь общей части которых не меньше 1/9.

Прислать комментарий     Решение

Задача 65155

Тема:   [ Принцип Дирихле (площадь и объем) ]
Сложность: 3+
Классы: 9,10,11

Ковёр имеет форму квадрата со стороной 275 см. Моль проела в нем четыре дырки. Можно ли гарантированно вырезать из ковра квадратный кусок со стороной 1 м, не содержащий дырок? Дырки считайте точечными.

Прислать комментарий     Решение

Задача 79322

Темы:   [ Принцип Дирихле (площадь и объем) ]
[ Центральная симметрия помогает решить задачу ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Окружности на сфере ]
Сложность: 4-
Классы: 9,10,11

На сферическом Солнце обнаружено конечное число круглых пятен, каждое из которых занимает меньше половины поверхности Солнца. Эти пятна предполагаются замкнутыми (т.е. граница пятна принадлежит ему) и не пересекаются между собой. Доказать, что на Солнце найдутся две диаметрально противоположные точки, не покрытые пятнами.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 >> [Всего задач: 26]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .