Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

При каких p и q уравнению  x² + px + q = 0  удовлетворяют два различных числа 2p и  p + q?

Вниз   Решение


Каждая сторона равностороннего треугольника разбита на n равных частей. Через точки деления проведены прямые, параллельные сторонам. В результате треугольник разбит на n2 треугольничков. Назовём цепочкой последовательность треугольничков, в которой ни один не появляется дважды и каждый последующий имеет общую сторону с предыдущим. Каково наибольшее возможное количество треугольничков в цепочке?

ВверхВниз   Решение


Автор: Дидин М.

Пусть $D$ – основание внешней биссектрисы угла $B$ треугольника $ABC$, в котором $AB > BC$. Сторона $AC$ касается вписанной и вневписанной окружностей в точках $K$ и $K_1$ соответственно, точки $I$ и $I_1$ – центры этих окружностей. Прямая $BK$ пересекает $DI_1$ в точке $X$, а $BK_1$ пересекает $DI$ в точке $Y$. Докажите, что $XY \perp AC$.

ВверхВниз   Решение


Плоскость раскрашена в три цвета. Докажите, что найдутся две точки одного цвета, расстояние между которыми равно 1.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 161]      



Задача 58180

Тема:   [ Шахматная раскраска ]
Сложность: 3
Классы: 8,9

В каждой клетке доски 5×5 клеток сидит жук. В некоторый момент все жуки переползают на соседние (по горизонтали или вертикали) клетки. Обязательно ли при этом останется пустая клетка?
Прислать комментарий     Решение


Задача 58191

Тема:   [ Вспомогательная раскраска (прочее) ]
Сложность: 3
Классы: 8,9

На клетчатой бумаге даны произвольные n клеток. Докажите, что из них можно выбрать не менее n/4 клеток, не имеющих общих точек.
Прислать комментарий     Решение


Задача 58196

Тема:   [ Вспомогательная раскраска (прочее) ]
Сложность: 3
Классы: 8,9

Плоскость раскрашена в три цвета. Докажите, что найдутся две точки одного цвета, расстояние между которыми равно 1.
Прислать комментарий     Решение


Задача 66819

Темы:   [ Вспомогательная раскраска (прочее) ]
[ Четность и нечетность ]
[ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 3
Классы: 8,9,10,11

В каждой клетке полоски длины 100 стоит по фишке. Можно за 1 рубль поменять местами любые две соседние фишки, а также можно бесплатно поменять местами любые две фишки, между которыми стоят ровно три фишки. За какое наименьшее количество рублей можно переставить фишки в обратном порядке?
Прислать комментарий     Решение


Задача 97931

Темы:   [ Вспомогательная раскраска (прочее) ]
[ Инварианты ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3
Классы: 7,8,9

Автор: Брискин Я.

В левый нижний угол шахматной доски 8×8 поставлено в форме квадрата 3×3 девять фишек. Фишка может прыгать на свободное поле через рядом стоящую фишку, то есть симметрично отражаться относительно её центра (прыгать можно по вертикали, горизонтали и диагонали). Можно ли за некоторое количество таких ходов поставить все фишки вновь в форме квадрата 3×3, но в другом углу:
  а) левом верхнем,
  б) правом верхнем?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 161]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .