ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости дано 4000 точек, никакие три из которых не лежат на одной прямой. Докажите, что существует 1000 непересекающихся четырехугольников (возможно, невыпуклых) с вершинами в этих точках.

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 75]      



Задача 110060

Темы:   [ Системы точек ]
[ Неравенство треугольника (прочее) ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 9,10,11

Автор: Карасев Р.

На плоскости дано бесконечное множество точек S , при этом в любом квадрате 1×1 лежит конечное число точек из множества S . Докажите, что найдутся две разные точки A и B из S такие, что для любой другой точки X из S выполняются неравенства:

|XA|,|XB| 0,999|AB|.

Прислать комментарий     Решение

Задача 110090

Темы:   [ Системы точек ]
[ Вспомогательные проекции ]
[ Разложение вектора по двум неколлинеарным векторам ]
[ Теория игр (прочее) ]
[ Метод координат на плоскости ]
Сложность: 5-
Классы: 9,10,11

На плоскости даны n>1 точек. Двое по очереди соединяют еще не соединенную пару точек вектором одного из двух возможных направлений. Если после очередного хода какого-то игрока сумма всех нарисованных векторов нулевая, то выигрывает второй; если же очередной ход невозможен, а нулевой суммы не было, то выигрывает первый. Кто выигрывает при правильной игре?
Прислать комментарий     Решение


Задача 110154

Темы:   [ Системы точек ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Наименьший или наибольший угол ]
[ Метод координат на плоскости ]
[ Пересекающиеся окружности ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 5
Классы: 9,10,11

На плоскости отмечено N 3 различных точек. Известно, что среди попарных расстояний между отмеченными точками встречаются не более n различных расстояний. Докажите, что N (n+1)2 .
Прислать комментарий     Решение


Задача 58287

Тема:   [ Системы точек ]
Сложность: 5+
Классы: 8,9

На плоскости дано n$ \ge$3 точек. Пусть d — наибольшее расстояние между парами этих точек. Докажите, что имеется не более n пар точек, расстояние между которыми равно d.
Прислать комментарий     Решение


Задача 58288

Тема:   [ Системы точек ]
Сложность: 5+
Классы: 8,9

На плоскости дано 4000 точек, никакие три из которых не лежат на одной прямой. Докажите, что существует 1000 непересекающихся четырехугольников (возможно, невыпуклых) с вершинами в этих точках.
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 75]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .