ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть точки A*, B*, C*, D* являются образами точек A, B, C,
D при инверсии. Докажите, что:
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 49]
Пусть точки A*, B*, C*, D* являются образами точек A, B, C,
D при инверсии. Докажите, что:
По неподвижной окружности, касаясь ее изнутри,
катится без скольжения окружность вдвое меньшего радиуса.
Какую траекторию описывает фиксированная точка K подвижной окружности?
В треугольнике ABC угол A наименьший. Через вершину A проведена прямая,
пересекающая отрезок BC. Она пересекает описанную окружность в точке X, а
серединные перпендикуляры к сторонам AC и AB — в точках B1 и C1.
Прямые BC1 и CB1 пересекаются в точке Y. Докажите, что BY + CY = AX.
Докажите, что если a, b, c и d — длины последовательных сторон
выпуклого четырехугольника ABCD, а m и n — длины его диагоналей, то
m2n2 = a2c2 + b2d2 - 2abcd cos(A + C) (Бретшнейдер).
Даны треугольник ABC и прямая l, проходящая через центр O вписанной
окружности. Обозначим через A1 (соответственно B1, C1) основание
перпендикуляра, опущенного на прямую l из точки A (соответственно B,
C), а через A2 (соответственно B2, C2) обозначим точку вписанной
окружности, диаметрально противоположную точке касания со стороной BC
(соответственно CA, AB). Докажите, что прямые A1A2, B1B2, C1C2,
пересекаются в одной точке, и эта точка лежит на вписанной окружности.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 49]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке