ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите суммы рядов

  а)  

  б)  

  в)    (r ≥ 2).

   Решение

Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 694]      



Задача 61485

Тема:   [ Линейные рекуррентные соотношения ]
Сложность: 4-
Классы: 9,10,11

Каким линейным рекуррентным соотношениям удовлетворяют последовательности

a) an = n2;        б) an = n3?

Прислать комментарий     Решение

Задача 76431

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 8,9

Найти сумму

13 + 33 + 53 + ... + (2n - 1)3.

Прислать комментарий     Решение

Задача 86119

Темы:   [ Арифметическая прогрессия ]
[ Уравнения с модулями ]
Сложность: 4-
Классы: 9,10,11

Сумма модулей членов конечной арифметической прогрессии равна 100. Если все ее члены увеличить на 1 или все ее члены увеличить на 2, то в обоих случаях сумма модулей членов полученной прогрессии будет также равна 100. Какие значения при этих условиях может принимать величина n2d, где d - разность прогрессии, а n - число ее членов?
Прислать комментарий     Решение


Задача 86125

Темы:   [ Арифметическая прогрессия ]
[ Уравнения с модулями ]
Сложность: 4-
Классы: 9,10,11

Сумма модулей членов конечной арифметической прогрессии равна 250. Если все ее члены увеличить на 1 или все ее члены увеличить на 2, то в обоих случаях сумма модулей членов полученной прогрессии будет также равна 250. Какие значения при этих условиях может принимать величина n2d, где d - разность прогрессии, а n - число ее членов?
Прислать комментарий     Решение


Задача 60427

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Ряды (прочее) ]
Сложность: 4-
Классы: 10,11

Найдите суммы рядов

  а)  

  б)  

  в)    (r ≥ 2).

Прислать комментарий     Решение

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .