ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что  pn+1 ≤ 22n + 1,  где pnn-е простое число.

   Решение

Задачи

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 192]      



Задача 88293

Темы:   [ Произведения и факториалы ]
[ Неравенство Коши ]
[ Арифметическая прогрессия ]
Сложность: 3
Классы: 7,8,9

Заменим в произведении 100· 101·102·...·200 все числа на 150. Увеличится или уменьшится произведение? Тот же вопрос для суммы.

Прислать комментарий     Решение

Задача 98380

Темы:   [ Десятичная система счисления ]
[ Производящие функции ]
[ Арифметическая прогрессия ]
Сложность: 3
Классы: 7,8,9,10

а) Для каждого трёхзначного числа берём произведение его цифр, а затем эти произведения, вычисленные для всех трёхзначных чисел, складываем. Сколько получится?
б) Тот же вопрос для четырёхзначных чисел.
Прислать комментарий     Решение


Задача 116620

Темы:   [ Процессы и операции ]
[ Делимость чисел. Общие свойства ]
[ Арифметическая прогрессия ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

На доске записаны числа: 4, 14, 24, ... , 94, 104. Можно ли стереть сначала одно число из записанных, потом стереть ещё два, потом – ещё три, и, наконец, стереть ещё четыре числа так, чтобы после каждого стирания сумма оставшихся на доске чисел делилась на 11?

Прислать комментарий     Решение

Задача 60509

Темы:   [ Простые числа и их свойства ]
[ Индукция (прочее) ]
[ Геометрическая прогрессия ]
Сложность: 3+
Классы: 8,9,10

Докажите, что  pn+1 ≤ 22n + 1,  где pnn-е простое число.

Прислать комментарий     Решение

Задача 60843

Темы:   [ Периодические и непериодические дроби ]
[ Обыкновенные дроби ]
[ Геометрическая прогрессия ]
Сложность: 3+
Классы: 7,8,9

Представьте следующие числа в виде обычных и в виде десятичных дробей:
  а)  0,(12) + 0,(122);   б)  0,(3)·0,(4);   в)  0,(9) – 0,(85).

Прислать комментарий     Решение

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 192]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .