ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Преобразования плоскости
>>
Движения
>>
Поворот
>>
Центральная симметрия
>>
Центральная симметрия помогает решить задачу
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть a и b – натуральные взаимно простые числа. Рассмотрим точки плоскости с целыми координатами (x, y), лежащие в полосе 0 ≤ x ≤ b – 1. Каждой такой точке припишем целое число N(x, y) = ax + by. |
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 109]
Точка K – середина гипотенузы АВ прямоугольного треугольника АВС. На катетах АС и ВС выбраны точки М и N соответственно так, что угол МKN – прямой. Докажите, что из отрезков АМ, ВN и MN можно составить прямоугольный треугольник.
В угол вписаны непересекающиеся окружности ω1 и ω2. Рассмотрим все такие пары параллельных прямых l1 и l2, что l1 касается ω1, l2 касается ω2 (ω1, ω2 находятся между l1 и l2). Докажите, что средние линии всех трапеций, образованных прямыми l1, l2 и сторонами данного угла, касаются фиксированной окружности.
Пусть a и b – натуральные взаимно простые числа. Рассмотрим точки плоскости с целыми координатами (x, y), лежащие в полосе 0 ≤ x ≤ b – 1. Каждой такой точке припишем целое число N(x, y) = ax + by.
На сторонах угла взяты точки A, B. Через середину M отрезка AB проведены две прямые, одна из которых пересекает стороны угла в точках A1, B1, другая – в точках A2 , B2. Прямые A1B2 и A2B1 пересекают AB в точках P и Q. Докажите, что M – середина PQ.
С помощью циркуля и линейки постройте пятиугольник по серединам его сторон.
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 109] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|