ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть α – действительное положительное число, d – натуральное.
Докажите, что количество натуральных чисел, не превосходящих α и делящихся на d, равно  [α/d].

   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 79]      



Задача 78619

Темы:   [ Количество и сумма делителей числа ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Уравнения в целых числах ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 9,10,11

Обозначим через d(N) число делителей N (числа 1 и N также считаются делителями). Найти все такие N, что число  P =   – простое.

Прислать комментарий     Решение

Задача 66840

Темы:   [ Функция Эйлера ]
[ Принцип Дирихле (прочее) ]
[ Формула включения-исключения ]
Сложность: 4+
Классы: 8,9,10,11

Некоторые из чисел 1, 2, 3, ..., $n$ покрашены в красный цвет так, что выполняется условие: если для красных чисел $a, b, c$ (не обязательно различных)  $a(b - c)$  делится на $n$, то  $b = c$.
Докажите, что красных чисел не больше чем φ($n$).

Прислать комментарий     Решение

Задача 60549

Темы:   [ Количество и сумма делителей числа ]
[ Ряды (прочее) ]
Сложность: 5-
Классы: 11

Может ли быть так, что   а)  σ(n) > 3n;   б)  σ(n) > 100n?

Прислать комментарий     Решение

Задача 116778

Темы:   [ Арифметические функции (прочее) ]
[ Произведения и факториалы ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 10,11

Автор: Петров Ф.

Для натурального n обозначим  Sn = 1! + 2! + ... + n!.  Докажите, что при некотором n у числа Sn есть простой делитель, больший 102012.

Прислать комментарий     Решение

Задача 60551

Темы:   [ Делимость чисел. Общие свойства ]
[ Количество и сумма делителей числа ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 2+
Классы: 6,7,8,9

Пусть α – действительное положительное число, d – натуральное.
Докажите, что количество натуральных чисел, не превосходящих α и делящихся на d, равно  [α/d].

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 79]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .