ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья "Очерк о цепных дробях": часть 1 (Нестеренко Ю., Никишин Е.) Статья "Очерк о цепных дробях": часть 2 (Нестеренко Ю., Никишин Е.) Материалы по этой теме: |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Используя формулу Муавра, докажите, что cos nx = Tn(cos x), sin nx = sin x Un–1(cos x), где Tn(z) и Un(z) – многочлены степени n. Многочлены Tn(z) и Un(z) называются многочленами Чебышёва первого и второго рода соответственно. Пусть z = e2πi/n = cos 2π/n + i sin 2π/n. Для произвольного целого a вычислите суммы Докажите, что Дан треугольник ABC. Точка M, расположенная
внутри треугольника, движется параллельно стороне BC до
пересечения со стороной CA, затем параллельно AB до
пересечения с BC, затем параллельно AC до пересечения
с AB и т. д. Докажите, что через некоторое число шагов
траектория движения точки замкнется.
У трёхгранного угла проведены биссектрисы плоских углов. Доказать, что попарные углы между биссектрисами либо одновременно тупые, либо одновременно прямые, либо одновременно острые. Пусть числа a и b определены равенством a/b = [a0; a1, a2, ..., an]. Докажите, что уравнение ax – by = 1 c неизвестными x и y имеет решением одну из пар (Qn–1, Pn–1) или (– Qn–1, – Pn–1), где Pn–1/Qn–1 – (n–1)-я подходящая дробь. От чего зависит, какая именно из пар является решением? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 40]
а) Докажите, что положительный корень квадратного уравнения bx² – abx – a = 0, где a и b – различные натуральные числа, разлагается в чисто периодическую цепную дробь с длиной периода, равной 2.
Докажите, что
Пусть числа a и b определены равенством a/b = [a0; a1, a2, ..., an]. Докажите, что уравнение ax – by = 1 c неизвестными x и y имеет решением одну из пар (Qn–1, Pn–1) или (– Qn–1, – Pn–1), где Pn–1/Qn–1 – (n–1)-я подходящая дробь. От чего зависит, какая именно из пар является решением?
Докажите, что любое иррациональное число α допускает представление α = [a0; a1, ..., an–1, αn], где a0 – целое, a1, a2, ..., an–1 – натуральные, αn > 1 – иррациональное действительное. Отсюда следует, что каждому иррациональному действительному числу можно поставить в соответствие бесконечную цепную дробь.
Предположим, что число α задано бесконечной цепной дробью α = [a0; a1, ..., an, ...]. Докажите, что
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 40]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке