ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

В лес за грибами пошли 11 девочек и n мальчиков. Вместе они собрали  n² + 9n – 2  гриба, причём все они собрали поровну грибов.
Кого было больше: мальчиков или девочек?

Вниз   Решение


Назовём точку на плоскости узлом, если обе её координаты целые числа. Дан треугольник с вершинами в узлах, внутри него расположено не меньше двух узлов. Докажите, что среди узлов внутри треугольника можно выбрать такие два узла, что проходящая через них прямая содержит одну из вершин треугольника или параллельна одной из сторон треугольника.

ВверхВниз   Решение


Доказать, что если  |ax² – bx + c| < 1  при любом x из отрезка  [–1, 1],  то и  |(a + b)x² + c| < 1  на этом отрезке.

ВверхВниз   Решение


Как при помощи чашечных весов без гирь разделить 24 кг гвоздей на две части  — 9 и 15 кг?

ВверхВниз   Решение


Решите уравнения   а)  φ(x) = 2;   б)  φ(x) = 8;   в)  φ(x) = 12;   г)  φ(x) = 14.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 60758

Тема:   [ Функция Эйлера ]
Сложность: 3
Классы: 9,10,11

Функция Эйлера φ(n) определяется как количество чисел от 1 до n, взаимно простых с n. Найдите   a) φ(17);   б) φ(p);   в) φ(p²);   г) φ(pα).

Прислать комментарий     Решение

Задача 60759

Тема:   [ Функция Эйлера ]
Сложность: 3
Классы: 9,10,11

Чему равна сумма  φ(1) + φ(p) + φ(p2) + ... + φ(pα),  где α #8211; некоторое натуральное число?

Прислать комментарий     Решение

Задача 60760

Темы:   [ Функция Эйлера ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 9,10,11

Функция Эйлера  φ(n)  определяется как количество чисел от 1 до n, взаимно простых с n.
Основным свойством функции Эйлера является её мультипликативность.
Для взаимно простых a и b рассмотрим таблицу

В каких столбцах этой таблицы находятся числа взаимно простые с числом b?
Сколько в каждом из этих столбцов чисел взаимно простых с a?
Докажите мультипликативность функции Эйлера, ответив на эти вопросы.

Прислать комментарий     Решение

Задача 60765

Темы:   [ Функция Эйлера ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 9,10,11

Решите уравнения   а)  φ(x) = 2;   б)  φ(x) = 8;   в)  φ(x) = 12;   г)  φ(x) = 14.

Прислать комментарий     Решение

Задача 60767

Темы:   [ Функция Эйлера ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 9,10,11

Решите уравнения   а)  φ(x) = x/2;   б)  φ(x) = x/3;    φ(x) = x/4.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .