ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что в любой бесконечной десятичной дроби можно так переставить цифры, что полученная дробь станет рациональным числом.

   Решение

Задачи

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 416]      



Задача 60420

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Числовые последовательности (прочее) ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 10,11

Какое слагаемое в разложении  (1 + )100  по формуле бинома Ньютона будет наибольшим?

Прислать комментарий     Решение

Задача 60844

Темы:   [ Принцип Дирихле (прочее) ]
[ Рациональные и иррациональные числа ]
[ Периодические и непериодические дроби ]
Сложность: 3+
Классы: 8,9,10

Докажите, что число рационально тогда и только тогда, когда оно представляется конечной или периодической десятичной дробью.

Прислать комментарий     Решение

Задача 60846

Темы:   [ Десятичные дроби (прочее) ]
[ Рациональные и иррациональные числа ]
Сложность: 3+
Классы: 8,9,10

Докажите, что в любой бесконечной десятичной дроби можно так переставить цифры, что полученная дробь станет рациональным числом.

Прислать комментарий     Решение

Задача 60855

Темы:   [ Квадратные уравнения. Формула корней ]
[ Рациональные и иррациональные числа ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 3+
Классы: 8,9,10

Один из корней уравнения  x² + ax + b = 0  равен  1 + .  Найдите a и b, если известно, что они рациональны.

Прислать комментарий     Решение

Задача 60866

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Рациональные и иррациональные числа ]
[ Тригонометрия (прочее) ]
Сложность: 3+
Классы: 9,10,11

Дана квадратная сетка на плоскости и треугольник с вершинами в узлах сетки. Докажите, что тангенс любого угла в треугольнике — число рациональное.

Прислать комментарий     Решение

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 416]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .