ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 416]      



Задача 66009

Темы:   [ Иррациональные уравнения ]
[ Возрастание и убывание. Исследование функций ]
Сложность: 3+
Классы: 10,11

Решите уравнение  f(f(x)) = f(x),  если  

Прислать комментарий     Решение

Задача 66741

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Предел последовательности, сходимость ]
[ НОД и НОК. Взаимная простота ]
[ Тождественные преобразования ]
Сложность: 3+
Классы: 8,9,10,11

Натуральные числа $a$ и $b$ таковы, что  $a^{n+1} + b^{n+1}$  делится на  $a^n+b^n$  для бесконечного множества различных натуральных $n$. Обязательно ли тогда  $a = b$?

Прислать комментарий     Решение

Задача 78102

Темы:   [ Смешанные уравнения и системы уравнений ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 3+
Классы: 10,11

Решить уравнение  x³ – [x] = 3.

Прислать комментарий     Решение

Задача 78650

Темы:   [ Деление с остатком ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 3+
Классы: 8,9,10

Число 4 обладает тем свойством, что при делении его на q² остаток получается меньше q²/2, каково бы ни было q.
Перечислить все числа, обладающие этим свойством.

Прислать комментарий     Решение

Задача 97865

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Рациональные и иррациональные числа ]
Сложность: 3+
Классы: 9,10,11

Автор: Варге И.

а) Привести пример такого положительного a, что  {a} + {1/a} = 1.
б) Может ли такое a быть рациональным числом?

Прислать комментарий     Решение

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 416]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .