Страница:
<< 34 35 36 37
38 39 40 >> [Всего задач: 416]
|
|
Сложность: 4- Классы: 10,11
|
Про непрерывную функцию
f известно, что:
- f определена на всей числовой прямой;
- f в каждой точке имеет производную (и, таким образом, график f в
каждой точке имеет единственную касательную);
- график функции f не содержит точек, у которых одна из координат
рациональна, а другая — иррациональна.
Следует ли отсюда, что график f — прямая?
|
|
Сложность: 4- Классы: 8,9,10,11
|
Докажите, что если выражение
принимает
рациональное значение, то и выражение
также принимает рациональное значение.
Докажите, что уравнение a1 sin x + b1 cos x + a2 sin 2x + b2 cos 2x + ... + an sin nx + bn cos nx = 0 имеет хотя бы один корень при любых значениях a1, b1, a2, b2, ..., an, bn.
|
|
Сложность: 4- Классы: 10,11
|
Двое играют в следующую игру. Ходят по очереди. Один называет два числа, являющихся концами отрезка. Следующий должен назвать два других числа, являющихся концами отрезка, вложенного в предыдущий. Игра продолжается бесконечно долго. Первый стремится, чтобы в пересечении всех названных отрезков было хотя бы одно рациональное число, а второй стремится ему помешать. Кто выигрывает?
|
|
Сложность: 4- Классы: 10,11
|
Найдите суммы рядов
а)
б)
в) (r ≥ 2).
Страница:
<< 34 35 36 37
38 39 40 >> [Всего задач: 416]