ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 416]      



Задача 60850

Темы:   [ Двоичная система счисления ]
[ Рациональные и иррациональные числа ]
Сложность: 4-
Классы: 9,10,11

Докажите, что среди чисел  [2k]  (k = 0, 1, ...)  бесконечно много составных.

Прислать комментарий     Решение

Задача 60939

Темы:   [ Исследование квадратного трехчлена ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 4-
Классы: 8,9,10

Пусть α – корень уравнения  x² + px + q = 0,  а β – уравнения  x² – pxq = 0.  Докажите, что между α и β лежит корень уравнения  x² – 2px – 2q = 0.

Прислать комментарий     Решение

Задача 60963

Темы:   [ Многочлен n-й степени имеет не более n корней ]
[ Производная и касательная ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 4-
Классы: 10,11

Можно ли из какой-то точки плоскости провести к графику многочлена n-й степени больше чем n касательных?

Прислать комментарий     Решение

Задача 61016

Темы:   [ Уравнения высших степеней (прочее) ]
[ Рациональные и иррациональные числа ]
Сложность: 4-
Классы: 8,9,10

Найдите рациональные корни многочленов:
  а)  x5 – 2x4 – 4x3 + 4x2 – 5x + 6;
  б)  x5 + x4 – 6x3 – 14x2 – 11x – 3.

Прислать комментарий     Решение

Задача 61140

Темы:   [ Комплексные числа помогают решить задачу ]
[ Производная и кратные корни ]
Сложность: 4-
Классы: 10,11

При каких n многочлен  (x + 1)nxn – 1  делится на:
  а)  x² + x + 1;   б)  (x² + x + 1)²;   в) (x² + x + 1)³?

Прислать комментарий     Решение

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 416]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .