ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть a, b – натуральные числа и  (a, b) = 1.  Докажите, что величина    не может быть действительным числом за исключением случаев
(a, b) = (1, 1), (1,3), (3,1).

   Решение

Задачи

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 416]      



Задача 116558

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Монотонность, ограниченность ]
Сложность: 4
Классы: 9,10

Ненулевые числа a, b, c таковы, что каждые два из трёх уравнений  ax11 + bx4 + c = 0,  bx11 + cx4 + a = 0,  cx11 + ax4 + b = 0  имеют общий корень. Докажите, что все три уравнения имеют общий корень.

Прислать комментарий     Решение

Задача 116704

Темы:   [ Двоичная система счисления ]
[ Возрастание и убывание. Исследование функций ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 11

Учитель написал на доске в алфавитном порядке все возможные 2n слов, состоящих из n букв А или Б. Затем он заменил каждое слово на произведение n множителей, исправив каждую букву А на x, а каждую букву Б – на  (1 – x),  и сложил между собой несколько первых из этих многочленов от x. Докажите, что полученный многочлен представляет собой либо постоянную, либо возрастающую на отрезке  [0, 1]  функцию от x.

Прислать комментарий     Решение

Задача 61111

Темы:   [ Тригонометрическая форма. Формула Муавра ]
[ Рациональные и иррациональные числа ]
Сложность: 4+
Классы: 9,10,11

Пусть a, b – натуральные числа и  (a, b) = 1.  Докажите, что величина    не может быть действительным числом за исключением случаев
(a, b) = (1, 1), (1,3), (3,1).

Прислать комментарий     Решение

Задача 61392

 [Неравенство Юнга]
Темы:   [ Классические неравенства (прочее) ]
[ Неравенство Иенсена ]
Сложность: 4+
Классы: 9,10,11

Даны рациональные положительные p, q, причём  1/p + 1/q = 1.  Докажите, что для положительных a и b выполняется неравенство   ab ≤ ap/p + bq/q.

Прислать комментарий     Решение

Задача 61411

 [Неравенство Гёльдера]
Темы:   [ Классические неравенства ]
[ Неравенство Иенсена ]
Сложность: 4+
Классы: 10,11

Пусть p и q – положительные числа, причём   1/p + 1/q = 1.  Докажите, что  
Значения переменных считаются положительными.

Прислать комментарий     Решение

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 416]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .