Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 18 задач
Версия для печати
Убрать все задачи

Рассматриваются всевозможные шестизвенные замкнутые ломаные, все вершины которых лежат на окружности.
  а) Нарисуйте такую ломаную, которая имеет наибольшее возможное число точек самопересечения.
  б) Докажите, что большего числа самопересечений такая ломаная не может иметь.

Вниз   Решение


Три купчихи – Сосипатра Титовна, Олимпиада Карповна и Поликсена Уваровна – сели пить чай. Олимпиада Карповна и Сосипатра Титовна выпили вдвоём 11 чашек, Поликсена Уваровна и Олимпиада Карповна – 15, а Сосипатра Титовна и Поликсена Уваровна – 14. Сколько чашек чая выпили все три купчихи вместе?

ВверхВниз   Решение


На затонувшей каравелле XIV века были найдены шесть мешков с золотыми монетами. В первых четырёх мешках оказалось по 60, 30, 20 и 15 золотых монет. Когда подсчитали монеты в оставшихся двух, кто-то заметил, что число монет в мешках составляет некую последовательность. Приняв это к сведению, смогли бы вы сказать, сколько монет в пятом и шестом мешках?

ВверхВниз   Решение


В классе учатся 38 человек. Докажите, что среди них найдутся четверо, родившихся в один месяц.

ВверхВниз   Решение


На кошачьей выставке в ряд сидят 10 котов и 19 кошек, причём рядом с каждой кошкой сидит более толстый кот.
Докажите, что рядом с каждым котом сидит кошка, которая тоньше него.

ВверхВниз   Решение


Две окружности с центрами O1 и O2 пересекаются в точках A и B. Биссектриса угла O1AO2 повторно пересекает окружности в точках C и D.
Докажите, что центр O описанной окружности треугольника CBD равноудалён от точек O1 и O2.

ВверхВниз   Решение


Боковые рёбра треугольной пирамиды попарно перпендикулярны и равны a , b и c . Найдите радиус описанной сферы.

ВверхВниз   Решение


У бабушки была клетчатая тряпочка (см. рисунок). Однажды она захотела сшить из неё подстилку коту в виде квадрата размером 5×5. Бабушка разрезала тряпочку на три части и сшила из них квадратный коврик, также раскрашенный в шахматном порядке. Покажите, как она могла это сделать (у тряпочки одна сторона – лицевая, а другая – изнаночная, то есть части можно поворачивать, но нельзя переворачивать).

ВверхВниз   Решение


Известно, что  p > 3  и p – простое число. Как вы думаете:
  а) будут ли чётными числа  p + 1  и  p – 1;
  б) будет ли хотя бы одно из них делиться на 3?

ВверхВниз   Решение


Бумажный квадрат был проколот в 1965 точках. Из точек-проколов и вершин квадрата никакие три не лежат на одной прямой. Потом сделали несколько прямолинейных не пересекающихся между собой разрезов, каждый из которых начинался и кончался только в проколотых точках или вершинах квадрата. Оказалось, что квадрат разрезан на треугольники, внутри которых проколов нет. Сколько было сделано разрезов и сколько получилось треугольников?

ВверхВниз   Решение


В классе имеется a1 учеников, получивших в течение года хотя бы одну двойку, a2 учеников, получивших не менее двух двоек, ..., ak учеников, получивших не менее k двоек. Сколько всего двоек в этом классе? (Предполагается, что ни у кого нет более k двоек.)

ВверхВниз   Решение


Решите систему
    y2 = 4x3 + x – 4,
    z2 = 4y3 + y – 4,
    x2 = 4z3 + z – 4.

ВверхВниз   Решение


Барон Мюнхгаузен утверждает, что смог разрезать некоторый равнобедренный треугольник на три треугольника так, что из любых двух можно сложить равнобедренный треугольник. Не хвастает ли барон?

ВверхВниз   Решение


В каждой целой точке числовой оси расположена лампочка с кнопкой, при нажатии которой лампочка меняет состояние – загорается или гаснет. Вначале все лампочки погашены. Задано конечное множество целых чисел – шаблон S. Его можно перемещать вдоль числовой оси как жесткую фигуру и, приложив в любом месте, поменять состояние множества всех лампочек, закрытых шаблоном. Докажите, что при любом S за несколько операций можно добиться того, что будут гореть ровно две лампочки.

ВверхВниз   Решение


Про треугольник, один из углов которого равен 120°, известно, что его можно разрезать на два равнобедренных треугольника.
Чему могут быть равны два других угла исходного треугольника?

ВверхВниз   Решение


С какой гарантированной точностью вычисляется $ \sqrt{k}$ при помощи алгоритма задачи 9.48 после пяти шагов?

ВверхВниз   Решение


На кошачьей выставке каждый посетитель погладил ровно трех кошек. При этом оказалось, что каждую кошку погладили ровно три посетителя.

Докажите, что посетителей было ровно столько же, сколько кошек.

ВверхВниз   Решение


Докажите неравенство:   + ... + .
Значения переменных считаются положительными.

Вверх   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 117]      



Задача 110132

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Исследование квадратного трехчлена ]
Сложность: 4-
Классы: 8,9,10

Докажите, что стороны любого неравнобедренного треугольника можно либо все увеличить, либо все уменьшить на одну и ту же величину так, чтобы получился прямоугольный треугольник.

Прислать комментарий     Решение

Задача 110201

Темы:   [ Свойства коэффициентов многочлена ]
[ Исследование квадратного трехчлена ]
Сложность: 4-
Классы: 8,9,10,11

Произведение квадратных трёхчленов  x² + a1x + b1x² + a2x + b2,  ...,  x² + anx + bn  равно многочлену  P(x) = x2n + c1x2n–1 + c2x2n–2 + ... + c2n–1x + c2n,  где коэффициенты  c1, c2, ..., c2n  положительны. Докажите, что для некоторого k  (1 ≤ k ≤ n)  коэффициенты ak и bk положительны.

Прислать комментарий     Решение

Задача 110923

Темы:   [ Числовые таблицы и их свойства ]
[ Исследование квадратного трехчлена ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

Впишите в клетки квадрата 3×3 числа так, что если в качестве коэффициентов a, b, c  (a ≠ 0)  квадратного уравнения  ax² + bx + c = 0  взять числа из любой строки (слева направо), столбца или диагонали (сверху вниз) квадрата, то у получившегося уравнения будет хотя бы один корень.

Прислать комментарий     Решение

Задача 61401

Темы:   [ Классические неравенства (прочее) ]
[ Исследование квадратного трехчлена ]
Сложность: 4
Классы: 9,10,11

Докажите неравенство:   + ... + .
Значения переменных считаются положительными.

Прислать комментарий     Решение

Задача 79518

Темы:   [ Классические неравенства (прочее) ]
[ Исследование квадратного трехчлена ]
Сложность: 4
Классы: 9,10,11

Доказать, что для любых чисел  a1, ..., a1987  и положительных чисел  b1,..., b1987  справедливо неравенство

+ ... + .

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 117]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .