|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что если α < β, то Sα(x) ≤ Sβ(x), причём равенство возможно только когда x1 = x2 = ... = xn. |
Страница: << 1 2 3 4 >> [Всего задач: 16]
Докажите неравенства: г)
Докажите, что если α < β, то Sα(x) ≤ Sβ(x), причём равенство возможно только когда x1 = x2 = ... = xn.
Приведенные квадратные трёхчлены f(x) и g(x) принимают отрицательные значения на непересекающихся интервалах.
Докажите, что если α < β и αβ ≠ 0, то Sα(x) ≤ Sβ(x).
Докажите, что если α < 0 < β, то
Sα(x) ≤ S0(x) ≤ Sβ(x), причём
Страница: << 1 2 3 4 >> [Всего задач: 16] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|