ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Из клетчатого квадрата 55×55 вырезали по границам клеток 400 трёхклеточных уголков    (повёрнутых как угодно) и ещё 500 клеток.
Докажите, что какие-то две вырезанные фигуры имеют общий отрезок границы.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]      



Задача 35058

Темы:   [ Покрытия ]
[ Принцип Дирихле (площадь и объем) ]
Сложность: 3+
Классы: 8,9,10

10 журналов лежат на журнальном столе, полностью покрывая его. Докажите, что можно убрать пять из них так, что оставшиеся журналы будут покрывать не менее половины площади стола.
Прислать комментарий     Решение


Задача 65194

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Принцип Дирихле (площадь и объем) ]
Сложность: 4-
Классы: 9,10

Каждый день Фрёкен Бок испекает квадратный торт размером 3×3. Карлсон немедленно вырезает себе из него четыре квадратных куска размером 1×1 со сторонами, параллельными сторонам торта (не обязательно по линиям сетки 3×3). После этого Малыш вырезает себе из оставшейся части торта квадратный кусок со сторонами, также параллельными сторонам торта. На какой наибольший кусок торта может рассчитывать Малыш вне зависимости от действий Карлсона?

Прислать комментарий     Решение

Задача 60445

Темы:   [ Формула включения-исключения ]
[ Принцип Дирихле (площадь и объем) ]
[ Сочетания и размещения ]
Сложность: 4
Классы: 10,11

В прямоугольнике площади 1 расположено пять фигур площади ½ каждая. Докажите, что найдутся
  а) две фигуры, площадь общей части которых не меньше 3/20;
  б) две фигуры, площадь общей части которых не меньше ⅕;
  в) три фигуры, площадь общей части которых не меньше 1/20.

Прислать комментарий     Решение

Задача 64351

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Принцип Дирихле (площадь и объем) ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 4+
Классы: 9,10

Из клетчатого квадрата 55×55 вырезали по границам клеток 400 трёхклеточных уголков    (повёрнутых как угодно) и ещё 500 клеток.
Докажите, что какие-то две вырезанные фигуры имеют общий отрезок границы.

Прислать комментарий     Решение

Задача 98582

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Таблицы и турниры (прочее) ]
[ Принцип Дирихле (площадь и объем) ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Шень А.Х.

а) В классе была дана контрольная. Известно, что по крайней мере ⅔ задач этой контрольной оказались трудными: каждую такую задачу не решили по крайней мере ⅔ школьников. Известно также, что по крайней мере ⅔ школьников класса написали контрольную хорошо: каждый такой школьник решил по крайней мере ⅔ задач контрольной. Могло ли такое быть?

Изменится ли ответ, если везде в условии заменить ⅔ на   б) ¾;   в) 7/10?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .