Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Рассматриваются всевозможные шестизвенные замкнутые ломаные, все вершины которых лежат на окружности.
  а) Нарисуйте такую ломаную, которая имеет наибольшее возможное число точек самопересечения.
  б) Докажите, что большего числа самопересечений такая ломаная не может иметь.

Вниз   Решение


Три купчихи – Сосипатра Титовна, Олимпиада Карповна и Поликсена Уваровна – сели пить чай. Олимпиада Карповна и Сосипатра Титовна выпили вдвоём 11 чашек, Поликсена Уваровна и Олимпиада Карповна – 15, а Сосипатра Титовна и Поликсена Уваровна – 14. Сколько чашек чая выпили все три купчихи вместе?

ВверхВниз   Решение


На затонувшей каравелле XIV века были найдены шесть мешков с золотыми монетами. В первых четырёх мешках оказалось по 60, 30, 20 и 15 золотых монет. Когда подсчитали монеты в оставшихся двух, кто-то заметил, что число монет в мешках составляет некую последовательность. Приняв это к сведению, смогли бы вы сказать, сколько монет в пятом и шестом мешках?

ВверхВниз   Решение


В классе учатся 38 человек. Докажите, что среди них найдутся четверо, родившихся в один месяц.

ВверхВниз   Решение


На кошачьей выставке в ряд сидят 10 котов и 19 кошек, причём рядом с каждой кошкой сидит более толстый кот.
Докажите, что рядом с каждым котом сидит кошка, которая тоньше него.

ВверхВниз   Решение


Две окружности с центрами O1 и O2 пересекаются в точках A и B. Биссектриса угла O1AO2 повторно пересекает окружности в точках C и D.
Докажите, что центр O описанной окружности треугольника CBD равноудалён от точек O1 и O2.

ВверхВниз   Решение


Боковые рёбра треугольной пирамиды попарно перпендикулярны и равны a , b и c . Найдите радиус описанной сферы.

ВверхВниз   Решение


У бабушки была клетчатая тряпочка (см. рисунок). Однажды она захотела сшить из неё подстилку коту в виде квадрата размером 5×5. Бабушка разрезала тряпочку на три части и сшила из них квадратный коврик, также раскрашенный в шахматном порядке. Покажите, как она могла это сделать (у тряпочки одна сторона – лицевая, а другая – изнаночная, то есть части можно поворачивать, но нельзя переворачивать).

ВверхВниз   Решение


Известно, что  p > 3  и p – простое число. Как вы думаете:
  а) будут ли чётными числа  p + 1  и  p – 1;
  б) будет ли хотя бы одно из них делиться на 3?

ВверхВниз   Решение


Бумажный квадрат был проколот в 1965 точках. Из точек-проколов и вершин квадрата никакие три не лежат на одной прямой. Потом сделали несколько прямолинейных не пересекающихся между собой разрезов, каждый из которых начинался и кончался только в проколотых точках или вершинах квадрата. Оказалось, что квадрат разрезан на треугольники, внутри которых проколов нет. Сколько было сделано разрезов и сколько получилось треугольников?

ВверхВниз   Решение


В классе имеется a1 учеников, получивших в течение года хотя бы одну двойку, a2 учеников, получивших не менее двух двоек, ..., ak учеников, получивших не менее k двоек. Сколько всего двоек в этом классе? (Предполагается, что ни у кого нет более k двоек.)

ВверхВниз   Решение


Решите систему
    y2 = 4x3 + x – 4,
    z2 = 4y3 + y – 4,
    x2 = 4z3 + z – 4.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 70]      



Задача 98214

Темы:   [ Теория алгоритмов (прочее) ]
[ Итерации ]
[ Принцип Дирихле (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 8,9,10

В каждой целой точке числовой оси расположена лампочка с кнопкой, при нажатии которой лампочка меняет состояние – загорается или гаснет. Вначале все лампочки погашены. Задано конечное множество целых чисел – шаблон S. Его можно перемещать вдоль числовой оси как жесткую фигуру и, приложив в любом месте, поменять состояние множества всех лампочек, закрытых шаблоном. Докажите, что при любом S за несколько операций можно добиться того, что будут гореть ровно две лампочки.

Прислать комментарий     Решение

Задача 61329

 [Метод Ньютона и числа Фибоначчи]
Темы:   [ Квадратный трехчлен (прочее) ]
[ Итерации ]
[ Числа Фибоначчи ]
[ Цепные (непрерывные) дроби ]
Сложность: 4
Классы: 10,11

Применим метод Ньютона (см. задачу 61328) для приближённого нахождения корней многочлена   f(x) = x² – x – 1. Какие последовательности чисел получатся, если
  а)  x0 = 1;   б)  x0 = 0?
К каким числам будут сходиться эти последовательности?
Опишите разложения чисел xn в цепные дроби.

Прислать комментарий     Решение

Задача 61334

 [Метод Лобачевского и числа Люка]
Темы:   [ Многочлены (прочее) ]
[ Итерации ]
[ Числа Фибоначчи ]
Сложность: 4
Классы: 10,11

Постройте последовательность полиномов, которая получается, если метод Лобачевского (см. задачу 61333) применить для приближенного нахождения корней многочлена  x² – x – 1.  Какие последовательности будут сходиться к корням x1 и x2, если  |x1| > |x2|?

Прислать комментарий     Решение

Задача 64415

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Итерации ]
[ Ограниченность, монотонность ]
Сложность: 4

Решите систему
    y2 = 4x3 + x – 4,
    z2 = 4y3 + y – 4,
    x2 = 4z3 + z – 4.

Прислать комментарий     Решение

Задача 73774

Темы:   [ Вписанные и описанные окружности ]
[ Итерации ]
[ Рациональные и иррациональные числа ]
[ Теорема Эйлера ]
[ Периодичность и непериодичность ]
[ Принцип Дирихле (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 4+
Классы: 10,11

Автор: Чернов Н.

На плоскости даны две точки A и B. Пусть C – некоторая точка плоскости, равноудалённая от точек A и B. Построим последовательность точек
C1 = C, C2, C3, ...,  где Cn+1 – центр описанной окружности треугольника ABCn. При каком положении точки C
  а) точка Cn попадёт в середину отрезка AB (при этом Cn+1 и дальнейшие члены последовательности не определены)?
  б) точка Cn совпадает с C?

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 70]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .