ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Может ли объединение двух треугольников оказаться 13-угольником?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 75]      



Задача 88302

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Правильный (равносторонний) треугольник ]
[ Раскраски ]
Сложность: 2+
Классы: 6,7,8

Плоскость раскрашена в два цвета. Докажите, что найдутся две точки одного цвета на расстоянии 2004 м.
Прислать комментарий     Решение


Задача 34967

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 2+
Классы: 7,8,9

Расположите 10 треугольников на плоскости так, чтобы любые два из них имели общую точку, а любые три - нет.
Прислать комментарий     Решение


Задача 35094

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Наименьший или наибольший угол ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 3
Классы: 8,9,10

На окружности отмечено n точек, причём известно, что для каждых двух отмеченных точек одна из дуг, соединяющих их, имеет величину, меньшую 120°. Докажите, что все точки лежат на одной дуге величиной 120°.

Прислать комментарий     Решение

Задача 35500

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Наглядная геометрия в пространстве ]
[ Многогранники и многоугольники (прочее) ]
[ Разные задачи на разрезания ]
Сложность: 3
Классы: 9,10

Петя склеил многогранник, затем разрезал его по рёбрам на отдельные грани, сложил в конверт и послал Ване.
Верно ли, что Ваня склеит из этих граней такой же многогранник, какой был у Пети?

Прислать комментарий     Решение

Задача 64484

Тема:   [ Комбинаторная геометрия (прочее) ]
Сложность: 3
Классы: 9,10,11

Может ли объединение двух треугольников оказаться 13-угольником?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 75]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .