Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 77]
|
|
Сложность: 4- Классы: 10,11
|
В тетраэдре DABC ∠ACB = ∠ADB, ребро СD перпендикулярно плоскости АВС. В треугольнике АВС дана высота h, проведённая к стороне АВ, и расстояние d от центра описанной окружности до этой стороны. Найдите CD.
|
|
Сложность: 4- Классы: 8,9,10
|
Внутри некоторого тетраэдра взяли произвольную точку X. Через каждую вершину тетраэдра провели прямую, параллельную отрезку, соединяющему X с точкой пересечения медиан противоположной грани. Докажите, что четыре полученные прямые пересекаются в одной точке.
|
|
Сложность: 4- Классы: 10,11
|
Докажите, что для любого тетраэдра его самый маленький двугранный угол (из шести) не больше чем двугранный угол правильного тетраэдра.
|
|
Сложность: 4- Классы: 10,11
|
Дана треугольная пирамида ABCD с плоскими прямыми углами при вершине D, в которой CD = AD + DB.
Докажите, что сумма плоских углов при вершине C равна 90°.
|
|
Сложность: 4- Классы: 10,11
|
К граням тетраэдра восстановлены перпендикуляры в их точках пересечения медиан.
Докажите, что проекции трёх перпендикуляров на четвёртую грань пересекаются в одной точке.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 77]