ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Два угла прямоугольного листа бумаги согнули так, как показано на рисунке. Противоположная сторона при этом оказалась разделённой на три равные части. Докажите, что закрашенный треугольник – равносторонний. Решение |
Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 207]
В треугольнике ABC биссектриса угла A пересекает сторону BC в точке D; прямая, проведённая через точку D параллельно CA, пересекает сторону AB в точке E; прямая, проведённая через точку E параллельно BC, пересекает сторону AC в F. Докажите, что EA = FC.
Полуокружность с диаметром AD касается катета BC прямоугольного треугольника ABC в точке М (см. рисунок).
Два угла прямоугольного листа бумаги согнули так, как показано на рисунке. Противоположная сторона при этом оказалась разделённой на три равные части. Докажите, что закрашенный треугольник – равносторонний.
В равнобедренном треугольнике АВС с основанием ВС проведена биссектриса CL. Докажите, что CL < 2BL.
Можно ли разрезать треугольник на три выпуклых многоугольника с попарно различным количеством сторон?
Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 207] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|