ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Преобразования плоскости
>>
Движения
>>
Осевая и скользящая симметрии
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан треугольник ABC. M – середина стороны BC, а P – проекция вершины B на серединный перпендикуляр к AC. Прямая PM пересекает сторону AB в точке Q. Докажите, что треугольник QPB равнобедренный. Решение |
Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 563]
Точка D – середина гипотенузы АВ прямоугольного треугольника ABC, ∠ВАС = 35°. Точка B1 симметрична точке B относительно прямой СD.
Окружность с центром I касается сторон AB, BC, CA треугольника ABC в точках C1, A1, B1. Прямые AI, CI, B1I пересекают A1C1 в точках X, Y, Z соответственно. Докажите, что ∠YB1Z = ∠XB1Z.
Дан треугольник ABC. M – середина стороны BC, а P – проекция вершины B на серединный перпендикуляр к AC. Прямая PM пересекает сторону AB в точке Q. Докажите, что треугольник QPB равнобедренный.
Функция f(x) определена для всех действительных чисел, причем для любого x выполняются равенства f(x + 2) = f(2 – x) и f(x + 7) = f(7 – x).
Докажите, что на графике любого квадратного трёхчлена со старшим коэффициентом 1, имеющего ровно один корень, найдётся такая точка (p, q), что трёхчлен x² + px + q также имеет ровно один корень.
Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 563] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|