Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Докажите, что если положительная квадратичная иррациональность  α =   разлагается в чисто периодическую цепную дробь, то сопряженная ей квадратичная иррациональность  α' =   принадлежит интервалу  (– 1, 0).

Вниз   Решение


Окружность S2 проходит через центр O окружности S1 и пересекает её в точках A и B. Через точку A проведена касательная к окружности S2. Точка D – вторая точка пересечения этой касательной с окружностью S1. Докажите, что  AD = AB.

ВверхВниз   Решение


Автор: Тыщук К.

Дано натуральное число  n > 3.  Назовём набор из n точек на координатной плоскости допустимым, если их абсциссы различны, и каждая из этих точек окрашена либо в красный, либо в синий цвет. Будем говорить, что многочлен P(x) разделяет допустимый набор точек, если либо выше графика P(x) нет красных точек, а ниже – нет синих, либо наоборот (на самом графике могут лежать точки обоих цветов). При каком наименьшем k любой допустимый набор из n точек можно разделить многочленом степени не более k?

ВверхВниз   Решение


Вокруг окружности описан пятиугольник, длины сторон которого – целые числа, а первая и третья стороны равны 1.
На какие отрезки делит вторую сторону точка касания?

ВверхВниз   Решение


Докажите, что в любом треугольнике большей стороне соответствует меньшая биссектриса.

ВверхВниз   Решение


В турнире участвуют 100 борцов, все разной силы. Более сильный всегда побеждает более слабого. Борцы разбились на пары и провели поединки. Затем разбились на пары по-другому и снова провели поединки. Призы получили те, кто выиграл оба поединка. Каково наименьшее возможное количество призёров?

ВверхВниз   Решение


Постройте четырехугольник по углам и диагоналям.

ВверхВниз   Решение


Даны точки A(1;0;1) , B(-2;2;1) , C(2;0;3) и D(0;4;-2) . Найдите расстояние между прямыми AB и CD .

ВверхВниз   Решение


В круговом шахматном турнире участвовало шесть человек: два мальчика и четыре девочки. Могли ли мальчики по итогам турнира набрать в два раза больше очков, чем девочки? (В круговом шахматном турнире каждый игрок играет с каждым по одной партии. За победу дается 1 очко, за ничью – 0,5, за поражение – 0).

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 110]      



Задача 116733

Темы:   [ Турниры и турнирные таблицы ]
[ Средние величины ]
Сложность: 3-
Классы: 7,8,9

Автор: Фольклор

Шахматист сыграл в турнире 20 партий и набрал 12,5 очков. На сколько партий больше он выиграл, чем проиграл?

Прислать комментарий     Решение

Задача 32824

Темы:   [ Турниры и турнирные таблицы ]
[ Четность и нечетность ]
[ Степень вершины ]
[ Доказательство от противного ]
Сложность: 3
Классы: 7,8,9

Трое друзей играли в шашки. Один из них сыграл 25 игр, а другой – 17 игр. Мог ли третий участник сыграть   а) 34;   б) 35;   в) 56 игр?

Прислать комментарий     Решение

Задача 64440

Темы:   [ Турниры и турнирные таблицы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10

В турнире участвуют 100 борцов, все разной силы. Более сильный всегда побеждает более слабого. Борцы разбились на пары и провели поединки. Затем разбились на пары по-другому и снова провели поединки. Призы получили те, кто выиграл оба поединка. Каково наименьшее возможное количество призёров?

Прислать комментарий     Решение

Задача 64948

Темы:   [ Турниры и турнирные таблицы ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 8,9,10

В круговом шахматном турнире участвовало шесть человек: два мальчика и четыре девочки. Могли ли мальчики по итогам турнира набрать в два раза больше очков, чем девочки? (В круговом шахматном турнире каждый игрок играет с каждым по одной партии. За победу дается 1 очко, за ничью – 0,5, за поражение – 0).

Прислать комментарий     Решение

Задача 64992

Темы:   [ Турниры и турнирные таблицы ]
[ Инварианты ]
Сложность: 3
Классы: 7,8,9

По окончании шахматного турнира Незнайка сказал: "Я набрал на 3,5 очка больше, чем потерял". Могут ли его слова быть правдой?
(Победа – 1 очко, ничья – ½ очка, поражение – 0.)

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .