Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Дан куб. Три плоскости, параллельные граням, разделили его на 8 параллелепипедов. Их покрасили в шахматном порядке. Объёмы чёрных параллелепипедов оказались равны 1, 6, 8, 12.
Найдите объёмы белых параллелепипедов.

Вниз   Решение


Пусть a, b, c, d — комплексные числа, причем углы a0b и c0d равны и противоположно ориентированы. Докажите, что тогда $ \Im$abcd = 0.

ВверхВниз   Решение


а) Постройте с помощью одного циркуля отрезок, который в два раза длиннее данного отрезка.
б) Постройте с помощью одного циркуля отрезок, который в n раз длиннее данного отрезка.

ВверхВниз   Решение


Сфера единичного радиуса касается всех ребер некоторой треугольной призмы. Чему может быть равен объем этой призмы? Ответ округлите до сотых.

ВверхВниз   Решение


На высоте BD треугольника ABC взята такая точка E, что  ∠AEC = 90°.  Точки O1 и O2 – центры описанных окружностей треугольников AEB и CEB; F, L – середины отрезков AC и O1O2. Докажите, что точки L, E, F лежат на одной прямой.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 158]      



Задача 53939

Темы:   [ Три точки, лежащие на одной прямой ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3-
Классы: 8,9

Докажите, что отличная от A точка пересечения окружностей, построенных на сторонах AB и AC треугольника ABC как на диаметрах, лежит на прямой BC.

Прислать комментарий     Решение

Задача 53138

Темы:   [ Три точки, лежащие на одной прямой ]
[ Вспомогательная окружность ]
[ Вписанные четырехугольники (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

На сторонах AB, BC, CD, DA прямоугольника ABCD взяты соответственно точки K, L, M, N, отличные от вершин. Известно, что   KL || MN  и
KMNL.  Докажите, что точка пересечения отрезков KM и LN лежит на диагонали BD прямоугольника.

Прислать комментарий     Решение

Задача 55451

 [Теорема Ньютона.]
Темы:   [ Три точки, лежащие на одной прямой ]
[ ГМТ - прямая или отрезок ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

Докажите, что во всяком описанном четырёхугольнике середины диагоналей и центр вписанной окружности расположены на одной прямой.

Прислать комментарий     Решение

Задача 65006

Темы:   [ Три точки, лежащие на одной прямой ]
[ Вписанные и описанные окружности ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9,10

На высоте BD треугольника ABC взята такая точка E, что  ∠AEC = 90°.  Точки O1 и O2 – центры описанных окружностей треугольников AEB и CEB; F, L – середины отрезков AC и O1O2. Докажите, что точки L, E, F лежат на одной прямой.

Прислать комментарий     Решение

Задача 65846

Темы:   [ Три точки, лежащие на одной прямой ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3+
Классы: 9,10

Бильярдный стол имеет вид прямоугольника 2×1, в углах и на серединах больших сторон которого расположены лузы. Какое наименьшее число шаров надо расположить внутри прямоугольника, чтобы каждая луза находилась на одной линии с некоторыми двумя шарами?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 158]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .