ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На стороне BC равностороннего треугольника ABC взяты такие точки M и N (M лежит между B и N) , что  ∠MAN = 30°.  Описанные окружности треугольников AMC и ANB пересекаются в точке K. Докажите, что прямая AK содержит центр описанной окружности треугольника AMN.

   Решение

Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 149]      



Задача 55417

Темы:   [ Угол между касательной и хордой ]
[ Теорема косинусов ]
[ Вспомогательные подобные треугольники ]
[ Пересекающиеся окружности ]
Сложность: 4-
Классы: 8,9

Две окружности пересекаются в точках A и B. Их центры расположены по разные стороны от прямой, содержащей отрезок AB. Точки K и N лежат на разных окружностях. Прямая, содержащая отрезок AK, касается одной окружности в точке A. Прямая, содержащая отрезок AN, касается другой окружности также в точке A. Известно, что     Найдите площадь треугольника KBN.

Прислать комментарий     Решение

Задача 55418

Темы:   [ Угол между касательной и хордой ]
[ Теорема косинусов ]
[ Вспомогательные подобные треугольники ]
[ Пересекающиеся окружности ]
Сложность: 4-
Классы: 8,9

Две окружности пересекаются в точках K и C. Их центры расположены по одну сторону от прямой, содержащей отрезок KC. Точки A и B лежат на разных окружностях. Прямая, содержащая отрезок AK, касается одной окружности в точке K. Прямая, содержащая отрезок BK, касается другой окружности также в точке K. Известно, что  AK = 2,  BK = ,  а  tg∠AKB = – .  Найдите площадь треугольника ABC.

Прислать комментарий     Решение

Задача 65007

Темы:   [ Правильный (равносторонний) треугольник ]
[ Три точки, лежащие на одной прямой ]
[ Вписанные и описанные окружности ]
[ Пересекающиеся окружности ]
[ Симметрия помогает решить задачу ]
[ Вписанный угол равен половине центрального ]
Сложность: 4-
Классы: 8,9

На стороне BC равностороннего треугольника ABC взяты такие точки M и N (M лежит между B и N) , что  ∠MAN = 30°.  Описанные окружности треугольников AMC и ANB пересекаются в точке K. Докажите, что прямая AK содержит центр описанной окружности треугольника AMN.

Прислать комментарий     Решение

Задача 108640

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Пересекающиеся окружности ]
[ Вспомогательные равные треугольники ]
[ Пересекающиеся окружности ]
[ Признаки и свойства параллелограмма ]
Сложность: 4-
Классы: 8,9

На плоскости даны две пересекающиеся окружности. Точка A – одна из двух точек пересечения. В каждой окружности проведён диаметр, параллельный касательной в точке A к другой окружности, причём эти диаметры не пересекаются. Докажите, что концы этих диаметров лежат на одной окружности.

Прислать комментарий     Решение

Задача 103934

Темы:   [ Окружность, вписанная в угол ]
[ Вписанный угол равен половине центрального ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Пересекающиеся окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Теорема синусов ]
[ Вневписанные окружности ]
Сложность: 4
Классы: 8,9

Две окружности радиуса 1 пересекаются в точках X, Y, расстояние между которыми также равно 1. Из точки C одной окружности проведены касательные CA, CB к другой. Прямая CB вторично пересекает первую окружность в точке A'. Найти расстояние AA'.

Прислать комментарий     Решение

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .