ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан треугольник ABC. С помощью двусторонней линейки, проведя не более восьми линий, постройте на стороне AB такую точку D, что
AD : BD = BC : AC.

   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 11]      



Задача 53945

Темы:   [ Построения с помощью двусторонней линейки ]
[ Симметрия и построения ]
Сложность: 4-
Классы: 8,9

Постройте центр данной окружности с помощью двусторонней линейки, если известно, что ширина линейки меньше диаметра окружности.

Прислать комментарий     Решение


Задача 65011

Темы:   [ Построения с помощью двусторонней линейки ]
[ Ромбы. Признаки и свойства ]
[ Отношение, в котором биссектриса делит сторону ]
[ Трапеции (прочее) ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 4-
Классы: 8,9,10,11

Дан треугольник ABC. С помощью двусторонней линейки, проведя не более восьми линий, постройте на стороне AB такую точку D, что
AD : BD = BC : AC.

Прислать комментарий     Решение

Задача 57281

Тема:   [ Построения с помощью двусторонней линейки ]
Сложность: 4
Классы: 8,9

Даны угол AOB, прямая l и точка P на ней. С помощью одной двусторонней линейки проведите через точку P прямые, образующие с прямой l угол, равный углу AOB.
Прислать комментарий     Решение


Задача 57282

Тема:   [ Построения с помощью двусторонней линейки ]
Сложность: 4
Классы: 8,9

Даны отрезок AB, непараллельная ему прямая l и точка M на ней. С помощью одной двусторонней линейки постройте точки пересечения прямой l с окружностью радиуса AB с центром M.
Прислать комментарий     Решение


Задача 57283

Тема:   [ Построения с помощью двусторонней линейки ]
Сложность: 5
Классы: 8,9

Даны прямая l и отрезок OA, параллельный l. С помощью одной двусторонней линейки постройте точки пересечения прямой l с окружностью радиуса OA с центром O.
Прислать комментарий     Решение


Страница: << 1 2 3 >> [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .