ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Четырехугольники
>>
Трапеции
>>
Равнобедренные, вписанные и описанные трапеции
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В угол с вершиной A вписана окружность, касающаяся сторон угла в точках B и C. Прямая, проходящая через A, пересекает окружность в точках D и E. Хорда BX параллельна прямой DE. Докажите, что отрезок XC проходит через середину отрезка DE. Решение |
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 292]
Дана равнобедренная трапеция, в которую вписана окружность и около которой описана окружность. Отношение длины описанной окружности к длине вписанной окружности равно 2. Найдите углы трапеции.
Центр окружности радиуса 6, касающейся сторон AB, BC и CD равнобедренной трапеции ABCD, лежит на её большем основании AD. Основание BC равно 4. Найдите расстояние между точками, в которых окружность касается боковых сторон AB и CD этой трапеции.
Окружность радиуса 4 вписана в равнобедренную трапецию, меньшее основание которой равно 4.
Трапеция ABCD с основаниями AB и CD вписана в окружность Ω. Окружность ω проходит через точки C, D и пересекает отрезки CA, CB в точках A1, B1 соответственно. Точки A2 и B2 симметричны точкам A1 и B1 относительно середин отрезков CA и CB соответственно. Докажите, что точки A, B, A2 и B2 лежат на одной окружности.
В угол с вершиной A вписана окружность, касающаяся сторон угла в точках B и C. Прямая, проходящая через A, пересекает окружность в точках D и E. Хорда BX параллельна прямой DE. Докажите, что отрезок XC проходит через середину отрезка DE.
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 292] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|