ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дана окружность с центром O и радиусом 1. Из точки A к ней проведены касательные AB и AC. Точка M, лежащая на окружности, такова, что четырёхугольники OBMC и ABMC имеют равные площади. Найдите MA.

   Решение

Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 769]      



Задача 55406

Темы:   [ Общая касательная к двум окружностям ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9

Общая внутренняя касательная к окружностям с радиусами R и r пересекает их общие внешние касательные в точках A и B и касается одной из окружностей в точке C. Докажите, что  AC·CB = Rr.

Прислать комментарий     Решение

Задача 55587

Темы:   [ Окружность, вписанная в угол ]
[ Симметрия помогает решить задачу ]
[ Биссектриса угла ]
Сложность: 4-
Классы: 8,9

Дана прямая l и точки A и B по одну сторону от нее. Найдите на прямой l такую точку M, чтобы луч MA был биссектрисой угла между лучом MB и одним из лучей с вершиной M, принадлежащих данной прямой l.

Прислать комментарий     Решение

Задача 64873

Темы:   [ Общая касательная к двум окружностям ]
[ Средняя линия трапеции ]
[ Центральная симметрия помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

В угол вписаны непересекающиеся окружности ω1 и ω2. Рассмотрим все такие пары параллельных прямых l1 и l2, что l1 касается ω1, l2 касается ω21, ω2 находятся между l1 и l2). Докажите, что средние линии всех трапеций, образованных прямыми l1, l2 и сторонами данного угла, касаются фиксированной окружности.

Прислать комментарий     Решение

Задача 65041

Темы:   [ Две касательные, проведенные из одной точки ]
[ Перегруппировка площадей ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 4-
Классы: 9,10

Дана окружность с центром O и радиусом 1. Из точки A к ней проведены касательные AB и AC. Точка M, лежащая на окружности, такова, что четырёхугольники OBMC и ABMC имеют равные площади. Найдите MA.

Прислать комментарий     Решение

Задача 67127

Темы:   [ Общая касательная к двум окружностям ]
[ Инверсия помогает решить задачу ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4-
Классы: 8,9,10,11

Дан выпуклый четырехугольник $ABCD$. Общие внешние касательные к окружностям $ABC$ и $ACD$ пересекаются в точке $E$, к окружностям $ABD$ и $BCD$ – в точке $F$. Докажите, что если точка $F$ лежит на прямой $AC$, то точка $E$ лежит на прямой $BD$.
Прислать комментарий     Решение


Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 769]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .