ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Прямая пересекает отрезок $AB$ в точке $C$. Какое максимальное число точек $X$ может найтись на этой прямой так, чтобы один из углов $AXC$ и $BXC$ был в два раза больше другого? Вася и Петя играют в следующую игру. На доске написаны два числа: 1/2009 и 1/2008. На каждом ходу Вася называет любое число x, а Петя увеличивает одно из чисел на доске (какое захочет) на x. Вася выигрывает, если в какой-то момент одно из чисел на доске станет равным 1. Сможет ли Вася выиграть, как бы ни действовал Петя? На доске написано число 1. Если на доске написано число а, его можно заменить любым числом вида a + d, где d взаимно просто с а и 10 ≤ d ≤ 20. |
Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 276]
На доске написано выражение
Натуральные числа a, b, c, d попарно взаимно просты и удовлетворяют равенству ab + cd = ac – 10bd.
На доске написано число 1. Если на доске написано число а, его можно заменить любым числом вида a + d, где d взаимно просто с а и 10 ≤ d ≤ 20.
Известно, что клетчатый квадрат можно разрезать на n одинаковых фигурок из k клеток.
Сто натуральных чисел образуют возрастающую арифметическую прогрессию. Возможно ли, что каждые два из этих чисел взаимно просты?
Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 276]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке