ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите все строго возрастающие последовательности натуральных чисел a1, a2, ..., an, ..., в которых a2 = 2 и anm = anam для любых натуральных n и m. Решение |
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 694]
Имеется бесконечная арифметическая прогрессия натуральных чисел с ненулевой разностью. Из каждого её члена извлекли квадратный корень и, если получилось нецелое число, округлили до ближайшего целого. Может ли быть, что все округления были в одну сторону?
Дано 2n + 1 число (n – натуральное), среди которых одно число равно 0, два числа равны 1, два числа равны 2, ..., два числа равны n. Для каких n эти числа можно записать в одну строку так, чтобы для каждого натурального m от 1 до n между двумя числами, равными m, было расположено ровно m других чисел?
Найдите все строго возрастающие последовательности натуральных чисел a1, a2, ..., an, ..., в которых a2 = 2 и anm = anam для любых натуральных n и m.
На конкурсе "А ну-ка, чудища!" стоят в ряд 15 драконов. У соседей число голов отличается на 1. Если у дракона больше голов, чем у обоих его соседей, его считают хитрым, если меньше, чем у обоих соседей, – сильным, остальных (в том числе стоящих с краю) считают обычными. В ряду есть ровно четыре хитрых дракона – с 4, 6, 7 и 7 головами и ровно три сильных – с 3, 3 и 6 головами. У первого и последнего драконов голов поровну.
Изначально на стол положили 100 карточек, на каждой из которых записано по натуральному числу; при этом было ровно 43 карточки с нечётными числами. Затем каждую минуту проводилась следующая процедура. Для каждых трёх карточек, лежащих на столе, вычислялось произведение записанных на них чисел, все эти произведения складывались, и полученное число записывалось на новую карточку, которая добавлялась к лежащим на столе. Через год после начала процесса выяснилось, что на столе есть карточка с числом, кратным 210000. Докажите, что число, кратное 210000, было на одной из карточек уже через день после начала.
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 694] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|