Страница:
<< 31 32 33 34
35 36 37 >> [Всего задач: 694]
|
|
Сложность: 4- Классы: 8,9,10,11
|
Покажите, что для любой последовательности $a_0$, $a_1$, ..., $a_n$, ..., состоящей из единиц и минус единиц, найдутся такие $n$ и $k$, что $|a_0a_1...a_k + a_1a_2...a_{k+1} + ... + a_na_{n+1}...a_{n+k}| = 2017.$
|
|
Сложность: 4- Классы: 9,10,11
|
Первая производная бесконечной последовательности $a_1, a_2$, ... – это последовательность $a'_n = a_{n+1} - a_n$ (где $n$ = 1, 2, ...), а её k-я производная – это первая производная её ($k$–1)-й производной
($k$ = 2, 3, ...). Назовём последовательность хорошей, если она и все её производные состоят из положительных чисел. Докажите, что если $a_1, a_2$, ... и $b_1, b_2$, ... – хорошие последовательности, то и $a_1b_1, a_2b_2$, ... – хорошая последовательность.
|
|
Сложность: 4- Классы: 9,10,11
|
Докажите, что для любого натурального числа n
Пусть x0 = 109,
xn = . Доказать, что 0 < x36 – < 10–9.
|
|
Сложность: 4- Классы: 10,11
|
Доказать, что для любых трёх бесконечных последовательностей натуральных чисел
a1... |
an |
... |
b1... |
bn |
... |
c1... |
cn |
... |
найдутся такие номера
p и
q, что
Страница:
<< 31 32 33 34
35 36 37 >> [Всего задач: 694]