ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сумма n последовательных натуральных чисел – простое число. Найдите все n, при которых это возможно.

   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 418]      



Задача 64769

Темы:   [ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10,11

Назовём натуральное число хорошим, если среди его делителей есть ровно два простых числа.
Могут ли 18 подряд идущих натуральных чисел быть хорошими?

Прислать комментарий     Решение

Задача 64781

Темы:   [ Делимость чисел. Общие свойства ]
[ Простые числа и их свойства ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 10,11

Натуральное число n назовём хорошим, если каждый его натуральный делитель, увеличенный на 1, является делителем числа  n + 1.
Найдите все хорошие натуральные числа.

Прислать комментарий     Решение

Задача 65401

Темы:   [ Делимость чисел. Общие свойства ]
[ Арифметическая прогрессия ]
Сложность: 3+
Классы: 8,9

Сумма n последовательных натуральных чисел – простое число. Найдите все n, при которых это возможно.

Прислать комментарий     Решение

Задача 65476

Темы:   [ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

Натуральные числа A и B делятся на все натуральные числа от 1 до 65. На какое наименьшее натуральное число может не делиться число  A + B?

Прислать комментарий     Решение

Задача 65504

Темы:   [ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Натуральное число n называется хорошим, если после приписывания его справа к любому натуральному числу получается число, делящееся на n. Запишите десять хороших чисел, которые меньше чем 1000.

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 418]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .