ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Каких натуральных чисел от 1 до 1000000 (включительно) больше: чётных с нечётной суммой цифр или нечётных с чётной суммой цифр?

Вниз   Решение


Пусть N – натуральное число. Докажите, что в десятичной записи либо числа N, либо числа 3N найдётся одна из цифр 1, 2, 9.

Вверх   Решение

Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 499]      



Задача 65223

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Признаки делимости на 11 ]
[ Простые числа и их свойства ]
[ Разложение на множители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8

Верно ли, что изменив одну цифру в десятичной записи любого натурального числа, можно получить простое число?

Прислать комментарий     Решение

Задача 65427

Темы:   [ Десятичная система счисления ]
[ Четность и нечетность ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 8,9,10,11

Каких натуральных чисел от 1 до 1000000 (включительно) больше: чётных с нечётной суммой цифр или нечётных с чётной суммой цифр?

Прислать комментарий     Решение

Задача 65511

Темы:   [ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10

Могут ли произведения всех ненулевых цифр двух последовательных натуральных чисел отличаться ровно в 54 раза?

Прислать комментарий     Решение

Задача 65568

Тема:   [ Десятичная система счисления ]
Сложность: 3+
Классы: 8,9

Пусть N – натуральное число. Докажите, что в десятичной записи либо числа N, либо числа 3N найдётся одна из цифр 1, 2, 9.

Прислать комментарий     Решение

Задача 65573

Темы:   [ Десятичная система счисления ]
[ Деление с остатком ]
Сложность: 3+
Классы: 10,11

Все натуральные числа выписали подряд без промежутков на бесконечную ленту: 123456789101112... Затем ленту разрезали на полоски по 7 цифр в каждой. Докажите, что любое семизначное число
  a) встретится хотя бы на одной из полосок;
  б) встретится на бесконечном числе полосок.

Прислать комментарий     Решение

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .