ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Точки M и K лежат на сторонах соответственно AB и BC треугольника ABC, отрезки AK и CM пересекаются в точке P. Известно, что каждый из отрезков AK и CM делится точкой P в отношении 2 : 1, считая от вершины. Докажите, что AK и CM – медианы треугольника. В треугольнике ABC основание высоты CD лежит на стороне AB, медиана AE равна 5, высота CD равна 6.
В треугольник ABC со стороной BC, равной 11, вписана
окружность, касающаяся стороны AB в точке D. Известно, что
AC = CD и косинус угла BAC равен
Четыре сферы радиуса 1 попарно касаются. Найдите высоту цилиндра, содержащего эти сферы так, что три из них касаются одного основания и боковой поверхности, а четвёртая – другого основания цилиндра. Найдите наименьшее натуральное число, кратное 99, в десятичной записи которого участвуют только чётные цифры. |
Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 499]
В десятичной записи числа – 36 цифр. Разрешается разбить его на группы по 6 цифр в каждой и как-нибудь переставить эти группы. Известно, что число, полученное при одной из перестановок, в 7 раз больше числа, полученного при другой перестановке. Докажите, что большее из этих чисел делится на 49.
Найдите наименьшее натуральное число, кратное 99, в десятичной записи которого участвуют только чётные цифры.
Найдите наименьшее натуральное число, десятичная запись квадрата которого оканчивается на 2016.
Из цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 составлены девять (не обязательно различных) девятизначных чисел; каждая из цифр использована в каждом числе ровно один раз. На какое наибольшее количество нулей может оканчиваться сумма этих девяти чисел?
Докажите, что натуральные числа n и n2017 оканчиваются на одну и ту же цифру.
Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 499]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке