ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Окружность ω касается сторон угла BAC в точках B и C. Прямая l пересекает отрезки AB и AC в точках K и L соответственно. Окружность ω пересекает l в точках P и Q. Точки S и T выбраны на отрезке BC так, что  KS || AC  и  LT || AB.  Докажите, что точки P, Q, S и T лежат на одной окружности.

   Решение

Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 122]      



Задача 65742

Темы:   [ Окружность, вписанная в угол ]
[ Четыре точки, лежащие на одной окружности ]
[ Две пары подобных треугольников ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3+
Классы: 8,9,10

Окружность ω касается сторон угла BAC в точках B и C. Прямая l пересекает отрезки AB и AC в точках K и L соответственно. Окружность ω пересекает l в точках P и Q. Точки S и T выбраны на отрезке BC так, что  KS || AC  и  LT || AB.  Докажите, что точки P, Q, S и T лежат на одной окружности.

Прислать комментарий     Решение

Задача 108504

Темы:   [ Трапеции (прочее) ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Две пары подобных треугольников ]
Сложность: 3+
Классы: 8,9

На боковых сторонах AB и CD трапеции ABCD отмечены точки P и Q так, что прямая PQ параллельна AD, а отрезок PQ делится диагоналями трапеции на три равные части. Найдите длину оонования BC, если известно, что  AD = a,  PQ = m,  а точка пересечения диагоналей трапеции лежит внутри четырёхугольника BPCQ.

Прислать комментарий     Решение

Задача 116205

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Две касательные, проведенные из одной точки ]
[ Две пары подобных треугольников ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 10,11

Четырёхугольник ABCD вписан в окружность, центр O которой лежит внутри него. Kасательные к окружности в точках A и C и прямая, симметричная BD относительно точки O, пересекаются в одной точке. Докажите, что произведения расстояний от O до противоположных сторон четырёхугольника равны.

Прислать комментарий     Решение

Задача 53735

Темы:   [ Теоремы Чевы и Менелая ]
[ Вписанные четырехугольники (прочее) ]
[ Две пары подобных треугольников ]
Сложность: 4-
Классы: 8,9

Четырёхугольник $ABCD$ вписан в окружность, $DC = m$, $DA = n$. На стороне $BA$ взяты точки $A_1$ и $K$, а на стороне $BC$ – точки $C_1$ и $M$. Известно, что $BA_1 = a$, $BC_1 = c$, $BK = BM$ и что отрезки $A_1M$ и $C_1K$ пересекаются на диагонали $BD$. Найдите $BK$ и $BM$.

Прислать комментарий     Решение

Задача 53885

Темы:   [ Трапеции (прочее) ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Две пары подобных треугольников ]
Сложность: 4-
Классы: 8,9

На основании AD трапеции ABCD взяты точки K и L так, что  AK = LD.  Отрезки AC и BL пересекаются в точке M, отрезки KC и BD – в точке N.
Докажите, что отрезок MN параллелен основаниям трапеции.

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 122]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .