ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Как правило знаков Декарта применить к оценке числа отрицательных корней многочлена f(x) = anxn + ... + a1x + a0?
На диагоналях D1A , A1B , B1C , C1D граней
куба ABCDA1B1C1D1 взяты соответственно точки M ,
N , P , Q , причём
а прямые MN и PQ взаимно перпендикулярны. Найдите μ . Окружность задана уравнением f (x, y) = 0, где
f (x, y) = x2 + y2 + ax + by + c.
Докажите, что степень точки (x0, y0) относительно этой окружности равна
f (x0, y0).
В прямоугольнике площади 1 расположено пять фигур площади ½ каждая. Докажите, что найдутся Известно, что число a положительно, а неравенство 10 < ax < 100 имеет ровно пять решений в натуральных числах. |
Страница: 1 2 3 >> [Всего задач: 12]
Расположите в порядке возрастания числа: 2222; 2222; 2222; 2222; 2222; 2222; 2222. Ответ обоснуйте.
Какое из двух чисел больше: а) б)
Какое из двух чисел больше: а) б)
Известно, что число a положительно, а неравенство 10 < ax < 100 имеет ровно пять решений в натуральных числах.
Пользуясь равенством $\lg11=1{,}0413\ldots$, найдите наименьшее число $n>1$, для которого среди $n$-значных чисел нет ни одного, равного некоторой натуральной степени числа 11.
Страница: 1 2 3 >> [Всего задач: 12]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке